• Privacy Policy

Research Method

Home » Research Design – Types, Methods and Examples

Research Design – Types, Methods and Examples

Table of Contents

Research Design

Research Design

Definition:

Research design refers to the overall strategy or plan for conducting a research study. It outlines the methods and procedures that will be used to collect and analyze data, as well as the goals and objectives of the study. Research design is important because it guides the entire research process and ensures that the study is conducted in a systematic and rigorous manner.

Types of Research Design

Types of Research Design are as follows:

Descriptive Research Design

This type of research design is used to describe a phenomenon or situation. It involves collecting data through surveys, questionnaires, interviews, and observations. The aim of descriptive research is to provide an accurate and detailed portrayal of a particular group, event, or situation. It can be useful in identifying patterns, trends, and relationships in the data.

Correlational Research Design

Correlational research design is used to determine if there is a relationship between two or more variables. This type of research design involves collecting data from participants and analyzing the relationship between the variables using statistical methods. The aim of correlational research is to identify the strength and direction of the relationship between the variables.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This type of research design involves manipulating one variable and measuring the effect on another variable. It usually involves randomly assigning participants to groups and manipulating an independent variable to determine its effect on a dependent variable. The aim of experimental research is to establish causality.

Quasi-experimental Research Design

Quasi-experimental research design is similar to experimental research design, but it lacks one or more of the features of a true experiment. For example, there may not be random assignment to groups or a control group. This type of research design is used when it is not feasible or ethical to conduct a true experiment.

Case Study Research Design

Case study research design is used to investigate a single case or a small number of cases in depth. It involves collecting data through various methods, such as interviews, observations, and document analysis. The aim of case study research is to provide an in-depth understanding of a particular case or situation.

Longitudinal Research Design

Longitudinal research design is used to study changes in a particular phenomenon over time. It involves collecting data at multiple time points and analyzing the changes that occur. The aim of longitudinal research is to provide insights into the development, growth, or decline of a particular phenomenon over time.

Structure of Research Design

The format of a research design typically includes the following sections:

  • Introduction : This section provides an overview of the research problem, the research questions, and the importance of the study. It also includes a brief literature review that summarizes previous research on the topic and identifies gaps in the existing knowledge.
  • Research Questions or Hypotheses: This section identifies the specific research questions or hypotheses that the study will address. These questions should be clear, specific, and testable.
  • Research Methods : This section describes the methods that will be used to collect and analyze data. It includes details about the study design, the sampling strategy, the data collection instruments, and the data analysis techniques.
  • Data Collection: This section describes how the data will be collected, including the sample size, data collection procedures, and any ethical considerations.
  • Data Analysis: This section describes how the data will be analyzed, including the statistical techniques that will be used to test the research questions or hypotheses.
  • Results : This section presents the findings of the study, including descriptive statistics and statistical tests.
  • Discussion and Conclusion : This section summarizes the key findings of the study, interprets the results, and discusses the implications of the findings. It also includes recommendations for future research.
  • References : This section lists the sources cited in the research design.

Example of Research Design

An Example of Research Design could be:

Research question: Does the use of social media affect the academic performance of high school students?

Research design:

  • Research approach : The research approach will be quantitative as it involves collecting numerical data to test the hypothesis.
  • Research design : The research design will be a quasi-experimental design, with a pretest-posttest control group design.
  • Sample : The sample will be 200 high school students from two schools, with 100 students in the experimental group and 100 students in the control group.
  • Data collection : The data will be collected through surveys administered to the students at the beginning and end of the academic year. The surveys will include questions about their social media usage and academic performance.
  • Data analysis : The data collected will be analyzed using statistical software. The mean scores of the experimental and control groups will be compared to determine whether there is a significant difference in academic performance between the two groups.
  • Limitations : The limitations of the study will be acknowledged, including the fact that social media usage can vary greatly among individuals, and the study only focuses on two schools, which may not be representative of the entire population.
  • Ethical considerations: Ethical considerations will be taken into account, such as obtaining informed consent from the participants and ensuring their anonymity and confidentiality.

How to Write Research Design

Writing a research design involves planning and outlining the methodology and approach that will be used to answer a research question or hypothesis. Here are some steps to help you write a research design:

  • Define the research question or hypothesis : Before beginning your research design, you should clearly define your research question or hypothesis. This will guide your research design and help you select appropriate methods.
  • Select a research design: There are many different research designs to choose from, including experimental, survey, case study, and qualitative designs. Choose a design that best fits your research question and objectives.
  • Develop a sampling plan : If your research involves collecting data from a sample, you will need to develop a sampling plan. This should outline how you will select participants and how many participants you will include.
  • Define variables: Clearly define the variables you will be measuring or manipulating in your study. This will help ensure that your results are meaningful and relevant to your research question.
  • Choose data collection methods : Decide on the data collection methods you will use to gather information. This may include surveys, interviews, observations, experiments, or secondary data sources.
  • Create a data analysis plan: Develop a plan for analyzing your data, including the statistical or qualitative techniques you will use.
  • Consider ethical concerns : Finally, be sure to consider any ethical concerns related to your research, such as participant confidentiality or potential harm.

When to Write Research Design

Research design should be written before conducting any research study. It is an important planning phase that outlines the research methodology, data collection methods, and data analysis techniques that will be used to investigate a research question or problem. The research design helps to ensure that the research is conducted in a systematic and logical manner, and that the data collected is relevant and reliable.

Ideally, the research design should be developed as early as possible in the research process, before any data is collected. This allows the researcher to carefully consider the research question, identify the most appropriate research methodology, and plan the data collection and analysis procedures in advance. By doing so, the research can be conducted in a more efficient and effective manner, and the results are more likely to be valid and reliable.

Purpose of Research Design

The purpose of research design is to plan and structure a research study in a way that enables the researcher to achieve the desired research goals with accuracy, validity, and reliability. Research design is the blueprint or the framework for conducting a study that outlines the methods, procedures, techniques, and tools for data collection and analysis.

Some of the key purposes of research design include:

  • Providing a clear and concise plan of action for the research study.
  • Ensuring that the research is conducted ethically and with rigor.
  • Maximizing the accuracy and reliability of the research findings.
  • Minimizing the possibility of errors, biases, or confounding variables.
  • Ensuring that the research is feasible, practical, and cost-effective.
  • Determining the appropriate research methodology to answer the research question(s).
  • Identifying the sample size, sampling method, and data collection techniques.
  • Determining the data analysis method and statistical tests to be used.
  • Facilitating the replication of the study by other researchers.
  • Enhancing the validity and generalizability of the research findings.

Applications of Research Design

There are numerous applications of research design in various fields, some of which are:

  • Social sciences: In fields such as psychology, sociology, and anthropology, research design is used to investigate human behavior and social phenomena. Researchers use various research designs, such as experimental, quasi-experimental, and correlational designs, to study different aspects of social behavior.
  • Education : Research design is essential in the field of education to investigate the effectiveness of different teaching methods and learning strategies. Researchers use various designs such as experimental, quasi-experimental, and case study designs to understand how students learn and how to improve teaching practices.
  • Health sciences : In the health sciences, research design is used to investigate the causes, prevention, and treatment of diseases. Researchers use various designs, such as randomized controlled trials, cohort studies, and case-control studies, to study different aspects of health and healthcare.
  • Business : Research design is used in the field of business to investigate consumer behavior, marketing strategies, and the impact of different business practices. Researchers use various designs, such as survey research, experimental research, and case studies, to study different aspects of the business world.
  • Engineering : In the field of engineering, research design is used to investigate the development and implementation of new technologies. Researchers use various designs, such as experimental research and case studies, to study the effectiveness of new technologies and to identify areas for improvement.

Advantages of Research Design

Here are some advantages of research design:

  • Systematic and organized approach : A well-designed research plan ensures that the research is conducted in a systematic and organized manner, which makes it easier to manage and analyze the data.
  • Clear objectives: The research design helps to clarify the objectives of the study, which makes it easier to identify the variables that need to be measured, and the methods that need to be used to collect and analyze data.
  • Minimizes bias: A well-designed research plan minimizes the chances of bias, by ensuring that the data is collected and analyzed objectively, and that the results are not influenced by the researcher’s personal biases or preferences.
  • Efficient use of resources: A well-designed research plan helps to ensure that the resources (time, money, and personnel) are used efficiently and effectively, by focusing on the most important variables and methods.
  • Replicability: A well-designed research plan makes it easier for other researchers to replicate the study, which enhances the credibility and reliability of the findings.
  • Validity: A well-designed research plan helps to ensure that the findings are valid, by ensuring that the methods used to collect and analyze data are appropriate for the research question.
  • Generalizability : A well-designed research plan helps to ensure that the findings can be generalized to other populations, settings, or situations, which increases the external validity of the study.

Research Design Vs Research Methodology

Research DesignResearch Methodology
The plan and structure for conducting research that outlines the procedures to be followed to collect and analyze data.The set of principles, techniques, and tools used to carry out the research plan and achieve research objectives.
Describes the overall approach and strategy used to conduct research, including the type of data to be collected, the sources of data, and the methods for collecting and analyzing data.Refers to the techniques and methods used to gather, analyze and interpret data, including sampling techniques, data collection methods, and data analysis techniques.
Helps to ensure that the research is conducted in a systematic, rigorous, and valid way, so that the results are reliable and can be used to make sound conclusions.Includes a set of procedures and tools that enable researchers to collect and analyze data in a consistent and valid manner, regardless of the research design used.
Common research designs include experimental, quasi-experimental, correlational, and descriptive studies.Common research methodologies include qualitative, quantitative, and mixed-methods approaches.
Determines the overall structure of the research project and sets the stage for the selection of appropriate research methodologies.Guides the researcher in selecting the most appropriate research methods based on the research question, research design, and other contextual factors.
Helps to ensure that the research project is feasible, relevant, and ethical.Helps to ensure that the data collected is accurate, valid, and reliable, and that the research findings can be interpreted and generalized to the population of interest.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

What is a Hypothesis

What is a Hypothesis – Types, Examples and...

Research Paper Abstract

Research Paper Abstract – Writing Guide and...

Purpose of Research

Purpose of Research – Objectives and Applications

Context of the Study

Context of the Study – Writing Guide and Examples

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Paper Introduction

Research Paper Introduction – Writing Guide and...

Leave a comment x.

Save my name, email, and website in this browser for the next time I comment.

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Types of Research Designs
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of information and data. Note that the research problem determines the type of design you choose, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base. 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test the underlying assumptions of a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing the research design in your paper can vary considerably, but any well-developed description will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the information and/or data which will be necessary for an adequate testing of the hypotheses and explain how such information and/or data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction of your paper . You can obtain an overall sense of what to do by reviewing studies that have utilized the same research design [e.g., using a case study approach]. This can help you develop an outline to follow for your own paper.

NOTE: Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Action Research Design

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out [the "action" in action research] during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and this cyclic process repeats, continuing until a sufficient understanding of [or a valid implementation solution for] the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you ?

  • This is a collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research outcomes rather than testing theories.
  • When practitioners use action research, it has the potential to increase the amount they learn consciously from their experience; the action research cycle can be regarded as a learning cycle.
  • Action research studies often have direct and obvious relevance to improving practice and advocating for change.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you ?

  • It is harder to do than conducting conventional research because the researcher takes on responsibilities of advocating for change as well as for researching the topic.
  • Action research is much harder to write up because it is less likely that you can use a standard format to report your findings effectively [i.e., data is often in the form of stories or observation].
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action [e.g. change] and research [e.g. understanding] is time-consuming and complex to conduct.
  • Advocating for change usually requires buy-in from study participants.

Coghlan, David and Mary Brydon-Miller. The Sage Encyclopedia of Action Research . Thousand Oaks, CA:  Sage, 2014; Efron, Sara Efrat and Ruth Ravid. Action Research in Education: A Practical Guide . New York: Guilford, 2013; Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Lincoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605; McNiff, Jean. Writing and Doing Action Research . London: Sage, 2014; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

Case Study Design

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey or comprehensive comparative inquiry. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about an issue or phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a variety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and the extension of methodologies.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • Intense exposure to the study of a case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your interpretation of the findings can only apply to that particular case.

Case Studies. Writing@CSU. Colorado State University; Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Greenhalgh, Trisha, editor. Case Study Evaluation: Past, Present and Future Challenges . Bingley, UK: Emerald Group Publishing, 2015; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causal Design

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are causal! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base. 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, rather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101. Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study. Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design Application, Strengths and Weaknesses of Cross-Sectional Studies. Healthknowledge, 2009. Cross-Sectional Study. Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies. Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design, September 26, 2008; Erickson, G. Scott. "Descriptive Research Design." In New Methods of Market Research and Analysis . (Northampton, MA: Edward Elgar Publishing, 2017), pp. 51-77; Sahin, Sagufta, and Jayanta Mete. "A Brief Study on Descriptive Research: Its Nature and Application in Social Science." International Journal of Research and Analysis in Humanities 1 (2021): 11; K. Swatzell and P. Jennings. “Descriptive Research: The Nuts and Bolts.” Journal of the American Academy of Physician Assistants 20 (2007), pp. 55-56; Kane, E. Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities . London: Marion Boyars, 1985.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs. School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design. Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research. Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research. Wikipedia.

Field Research Design

Sometimes referred to as ethnography or participant observation, designs around field research encompass a variety of interpretative procedures [e.g., observation and interviews] rooted in qualitative approaches to studying people individually or in groups while inhabiting their natural environment as opposed to using survey instruments or other forms of impersonal methods of data gathering. Information acquired from observational research takes the form of “ field notes ” that involves documenting what the researcher actually sees and hears while in the field. Findings do not consist of conclusive statements derived from numbers and statistics because field research involves analysis of words and observations of behavior. Conclusions, therefore, are developed from an interpretation of findings that reveal overriding themes, concepts, and ideas. More information can be found HERE .

  • Field research is often necessary to fill gaps in understanding the research problem applied to local conditions or to specific groups of people that cannot be ascertained from existing data.
  • The research helps contextualize already known information about a research problem, thereby facilitating ways to assess the origins, scope, and scale of a problem and to gage the causes, consequences, and means to resolve an issue based on deliberate interaction with people in their natural inhabited spaces.
  • Enables the researcher to corroborate or confirm data by gathering additional information that supports or refutes findings reported in prior studies of the topic.
  • Because the researcher in embedded in the field, they are better able to make observations or ask questions that reflect the specific cultural context of the setting being investigated.
  • Observing the local reality offers the opportunity to gain new perspectives or obtain unique data that challenges existing theoretical propositions or long-standing assumptions found in the literature.

What these studies don't tell you

  • A field research study requires extensive time and resources to carry out the multiple steps involved with preparing for the gathering of information, including for example, examining background information about the study site, obtaining permission to access the study site, and building trust and rapport with subjects.
  • Requires a commitment to staying engaged in the field to ensure that you can adequately document events and behaviors as they unfold.
  • The unpredictable nature of fieldwork means that researchers can never fully control the process of data gathering. They must maintain a flexible approach to studying the setting because events and circumstances can change quickly or unexpectedly.
  • Findings can be difficult to interpret and verify without access to documents and other source materials that help to enhance the credibility of information obtained from the field  [i.e., the act of triangulating the data].
  • Linking the research problem to the selection of study participants inhabiting their natural environment is critical. However, this specificity limits the ability to generalize findings to different situations or in other contexts or to infer courses of action applied to other settings or groups of people.
  • The reporting of findings must take into account how the researcher themselves may have inadvertently affected respondents and their behaviors.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study. Wikipedia.

Meta-Analysis Design

Meta-analysis is an analytical methodology designed to systematically evaluate and summarize the results from a number of individual studies, thereby, increasing the overall sample size and the ability of the researcher to study effects of interest. The purpose is to not simply summarize existing knowledge, but to develop a new understanding of a research problem using synoptic reasoning. The main objectives of meta-analysis include analyzing differences in the results among studies and increasing the precision by which effects are estimated. A well-designed meta-analysis depends upon strict adherence to the criteria used for selecting studies and the availability of information in each study to properly analyze their findings. Lack of information can severely limit the type of analyzes and conclusions that can be reached. In addition, the more dissimilarity there is in the results among individual studies [heterogeneity], the more difficult it is to justify interpretations that govern a valid synopsis of results. A meta-analysis needs to fulfill the following requirements to ensure the validity of your findings:

  • Clearly defined description of objectives, including precise definitions of the variables and outcomes that are being evaluated;
  • A well-reasoned and well-documented justification for identification and selection of the studies;
  • Assessment and explicit acknowledgment of any researcher bias in the identification and selection of those studies;
  • Description and evaluation of the degree of heterogeneity among the sample size of studies reviewed; and,
  • Justification of the techniques used to evaluate the studies.
  • Can be an effective strategy for determining gaps in the literature.
  • Provides a means of reviewing research published about a particular topic over an extended period of time and from a variety of sources.
  • Is useful in clarifying what policy or programmatic actions can be justified on the basis of analyzing research results from multiple studies.
  • Provides a method for overcoming small sample sizes in individual studies that previously may have had little relationship to each other.
  • Can be used to generate new hypotheses or highlight research problems for future studies.
  • Small violations in defining the criteria used for content analysis can lead to difficult to interpret and/or meaningless findings.
  • A large sample size can yield reliable, but not necessarily valid, results.
  • A lack of uniformity regarding, for example, the type of literature reviewed, how methods are applied, and how findings are measured within the sample of studies you are analyzing, can make the process of synthesis difficult to perform.
  • Depending on the sample size, the process of reviewing and synthesizing multiple studies can be very time consuming.

Beck, Lewis W. "The Synoptic Method." The Journal of Philosophy 36 (1939): 337-345; Cooper, Harris, Larry V. Hedges, and Jeffrey C. Valentine, eds. The Handbook of Research Synthesis and Meta-Analysis . 2nd edition. New York: Russell Sage Foundation, 2009; Guzzo, Richard A., Susan E. Jackson and Raymond A. Katzell. “Meta-Analysis Analysis.” In Research in Organizational Behavior , Volume 9. (Greenwich, CT: JAI Press, 1987), pp 407-442; Lipsey, Mark W. and David B. Wilson. Practical Meta-Analysis . Thousand Oaks, CA: Sage Publications, 2001; Study Design 101. Meta-Analysis. The Himmelfarb Health Sciences Library, George Washington University; Timulak, Ladislav. “Qualitative Meta-Analysis.” In The SAGE Handbook of Qualitative Data Analysis . Uwe Flick, editor. (Los Angeles, CA: Sage, 2013), pp. 481-495; Walker, Esteban, Adrian V. Hernandez, and Micheal W. Kattan. "Meta-Analysis: It's Strengths and Limitations." Cleveland Clinic Journal of Medicine 75 (June 2008): 431-439.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

Philosophical Design

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, by what means does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Burton, Dawn. "Part I, Philosophy of the Social Sciences." In Research Training for Social Scientists . (London, England: Sage, 2000), pp. 1-5; Chapter 4, Research Methodology and Design. Unisa Institutional Repository (UnisaIR), University of South Africa; Jarvie, Ian C., and Jesús Zamora-Bonilla, editors. The SAGE Handbook of the Philosophy of Social Sciences . London: Sage, 2011; Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, DC: Falmer Press, 1994; McLaughlin, Hugh. "The Philosophy of Social Research." In Understanding Social Work Research . 2nd edition. (London: SAGE Publications Ltd., 2012), pp. 24-47; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

Sequential Design

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method.
  • This is a useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce intensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed. This provides opportunities for continuous improvement of sampling and methods of analysis.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more specific sample can be difficult.
  • The design cannot be used to create conclusions and interpretations that pertain to an entire population because the sampling technique is not randomized. Generalizability from findings is, therefore, limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Betensky, Rebecca. Harvard University, Course Lecture Note slides; Bovaird, James A. and Kevin A. Kupzyk. "Sequential Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 1347-1352; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Henry, Gary T. "Sequential Sampling." In The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman and Tim Futing Liao, editors. (Thousand Oaks, CA: Sage, 2004), pp. 1027-1028; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis. Wikipedia.

Systematic Review

  • A systematic review synthesizes the findings of multiple studies related to each other by incorporating strategies of analysis and interpretation intended to reduce biases and random errors.
  • The application of critical exploration, evaluation, and synthesis methods separates insignificant, unsound, or redundant research from the most salient and relevant studies worthy of reflection.
  • They can be use to identify, justify, and refine hypotheses, recognize and avoid hidden problems in prior studies, and explain data inconsistencies and conflicts in data.
  • Systematic reviews can be used to help policy makers formulate evidence-based guidelines and regulations.
  • The use of strict, explicit, and pre-determined methods of synthesis, when applied appropriately, provide reliable estimates about the effects of interventions, evaluations, and effects related to the overarching research problem investigated by each study under review.
  • Systematic reviews illuminate where knowledge or thorough understanding of a research problem is lacking and, therefore, can then be used to guide future research.
  • The accepted inclusion of unpublished studies [i.e., grey literature] ensures the broadest possible way to analyze and interpret research on a topic.
  • Results of the synthesis can be generalized and the findings extrapolated into the general population with more validity than most other types of studies .
  • Systematic reviews do not create new knowledge per se; they are a method for synthesizing existing studies about a research problem in order to gain new insights and determine gaps in the literature.
  • The way researchers have carried out their investigations [e.g., the period of time covered, number of participants, sources of data analyzed, etc.] can make it difficult to effectively synthesize studies.
  • The inclusion of unpublished studies can introduce bias into the review because they may not have undergone a rigorous peer-review process prior to publication. Examples may include conference presentations or proceedings, publications from government agencies, white papers, working papers, and internal documents from organizations, and doctoral dissertations and Master's theses.

Denyer, David and David Tranfield. "Producing a Systematic Review." In The Sage Handbook of Organizational Research Methods .  David A. Buchanan and Alan Bryman, editors. ( Thousand Oaks, CA: Sage Publications, 2009), pp. 671-689; Foster, Margaret J. and Sarah T. Jewell, editors. Assembling the Pieces of a Systematic Review: A Guide for Librarians . Lanham, MD: Rowman and Littlefield, 2017; Gough, David, Sandy Oliver, James Thomas, editors. Introduction to Systematic Reviews . 2nd edition. Los Angeles, CA: Sage Publications, 2017; Gopalakrishnan, S. and P. Ganeshkumar. “Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare.” Journal of Family Medicine and Primary Care 2 (2013): 9-14; Gough, David, James Thomas, and Sandy Oliver. "Clarifying Differences between Review Designs and Methods." Systematic Reviews 1 (2012): 1-9; Khan, Khalid S., Regina Kunz, Jos Kleijnen, and Gerd Antes. “Five Steps to Conducting a Systematic Review.” Journal of the Royal Society of Medicine 96 (2003): 118-121; Mulrow, C. D. “Systematic Reviews: Rationale for Systematic Reviews.” BMJ 309:597 (September 1994); O'Dwyer, Linda C., and Q. Eileen Wafford. "Addressing Challenges with Systematic Review Teams through Effective Communication: A Case Report." Journal of the Medical Library Association 109 (October 2021): 643-647; Okoli, Chitu, and Kira Schabram. "A Guide to Conducting a Systematic Literature Review of Information Systems Research."  Sprouts: Working Papers on Information Systems 10 (2010); Siddaway, Andy P., Alex M. Wood, and Larry V. Hedges. "How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and Meta-syntheses." Annual Review of Psychology 70 (2019): 747-770; Torgerson, Carole J. “Publication Bias: The Achilles’ Heel of Systematic Reviews?” British Journal of Educational Studies 54 (March 2006): 89-102; Torgerson, Carole. Systematic Reviews . New York: Continuum, 2003.

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: Jul 30, 2024 10:20 AM
  • URL: https://libguides.usc.edu/writingguide

research designs

Research Design 101

Everything You Need To Get Started (With Examples)

By: Derek Jansen (MBA) | Reviewers: Eunice Rautenbach (DTech) & Kerryn Warren (PhD) | April 2023

Research design for qualitative and quantitative studies

Navigating the world of research can be daunting, especially if you’re a first-time researcher. One concept you’re bound to run into fairly early in your research journey is that of “ research design ”. Here, we’ll guide you through the basics using practical examples , so that you can approach your research with confidence.

Overview: Research Design 101

What is research design.

  • Research design types for quantitative studies
  • Video explainer : quantitative research design
  • Research design types for qualitative studies
  • Video explainer : qualitative research design
  • How to choose a research design
  • Key takeaways

Research design refers to the overall plan, structure or strategy that guides a research project , from its conception to the final data analysis. A good research design serves as the blueprint for how you, as the researcher, will collect and analyse data while ensuring consistency, reliability and validity throughout your study.

Understanding different types of research designs is essential as helps ensure that your approach is suitable  given your research aims, objectives and questions , as well as the resources you have available to you. Without a clear big-picture view of how you’ll design your research, you run the risk of potentially making misaligned choices in terms of your methodology – especially your sampling , data collection and data analysis decisions.

The problem with defining research design…

One of the reasons students struggle with a clear definition of research design is because the term is used very loosely across the internet, and even within academia.

Some sources claim that the three research design types are qualitative, quantitative and mixed methods , which isn’t quite accurate (these just refer to the type of data that you’ll collect and analyse). Other sources state that research design refers to the sum of all your design choices, suggesting it’s more like a research methodology . Others run off on other less common tangents. No wonder there’s confusion!

In this article, we’ll clear up the confusion. We’ll explain the most common research design types for both qualitative and quantitative research projects, whether that is for a full dissertation or thesis, or a smaller research paper or article.

Free Webinar: Research Methodology 101

Research Design: Quantitative Studies

Quantitative research involves collecting and analysing data in a numerical form. Broadly speaking, there are four types of quantitative research designs: descriptive , correlational , experimental , and quasi-experimental . 

Descriptive Research Design

As the name suggests, descriptive research design focuses on describing existing conditions, behaviours, or characteristics by systematically gathering information without manipulating any variables. In other words, there is no intervention on the researcher’s part – only data collection.

For example, if you’re studying smartphone addiction among adolescents in your community, you could deploy a survey to a sample of teens asking them to rate their agreement with certain statements that relate to smartphone addiction. The collected data would then provide insight regarding how widespread the issue may be – in other words, it would describe the situation.

The key defining attribute of this type of research design is that it purely describes the situation . In other words, descriptive research design does not explore potential relationships between different variables or the causes that may underlie those relationships. Therefore, descriptive research is useful for generating insight into a research problem by describing its characteristics . By doing so, it can provide valuable insights and is often used as a precursor to other research design types.

Correlational Research Design

Correlational design is a popular choice for researchers aiming to identify and measure the relationship between two or more variables without manipulating them . In other words, this type of research design is useful when you want to know whether a change in one thing tends to be accompanied by a change in another thing.

For example, if you wanted to explore the relationship between exercise frequency and overall health, you could use a correlational design to help you achieve this. In this case, you might gather data on participants’ exercise habits, as well as records of their health indicators like blood pressure, heart rate, or body mass index. Thereafter, you’d use a statistical test to assess whether there’s a relationship between the two variables (exercise frequency and health).

As you can see, correlational research design is useful when you want to explore potential relationships between variables that cannot be manipulated or controlled for ethical, practical, or logistical reasons. It is particularly helpful in terms of developing predictions , and given that it doesn’t involve the manipulation of variables, it can be implemented at a large scale more easily than experimental designs (which will look at next).

That said, it’s important to keep in mind that correlational research design has limitations – most notably that it cannot be used to establish causality . In other words, correlation does not equal causation . To establish causality, you’ll need to move into the realm of experimental design, coming up next…

Need a helping hand?

research designs

Experimental Research Design

Experimental research design is used to determine if there is a causal relationship between two or more variables . With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions about potential causality.

For example, if you wanted to measure if/how different types of fertiliser affect plant growth, you could set up several groups of plants, with each group receiving a different type of fertiliser, as well as one with no fertiliser at all. You could then measure how much each plant group grew (on average) over time and compare the results from the different groups to see which fertiliser was most effective.

Overall, experimental research design provides researchers with a powerful way to identify and measure causal relationships (and the direction of causality) between variables. However, developing a rigorous experimental design can be challenging as it’s not always easy to control all the variables in a study. This often results in smaller sample sizes , which can reduce the statistical power and generalisability of the results.

Moreover, experimental research design requires random assignment . This means that the researcher needs to assign participants to different groups or conditions in a way that each participant has an equal chance of being assigned to any group (note that this is not the same as random sampling ). Doing so helps reduce the potential for bias and confounding variables . This need for random assignment can lead to ethics-related issues . For example, withholding a potentially beneficial medical treatment from a control group may be considered unethical in certain situations.

Quasi-Experimental Research Design

Quasi-experimental research design is used when the research aims involve identifying causal relations , but one cannot (or doesn’t want to) randomly assign participants to different groups (for practical or ethical reasons). Instead, with a quasi-experimental research design, the researcher relies on existing groups or pre-existing conditions to form groups for comparison.

For example, if you were studying the effects of a new teaching method on student achievement in a particular school district, you may be unable to randomly assign students to either group and instead have to choose classes or schools that already use different teaching methods. This way, you still achieve separate groups, without having to assign participants to specific groups yourself.

Naturally, quasi-experimental research designs have limitations when compared to experimental designs. Given that participant assignment is not random, it’s more difficult to confidently establish causality between variables, and, as a researcher, you have less control over other variables that may impact findings.

All that said, quasi-experimental designs can still be valuable in research contexts where random assignment is not possible and can often be undertaken on a much larger scale than experimental research, thus increasing the statistical power of the results. What’s important is that you, as the researcher, understand the limitations of the design and conduct your quasi-experiment as rigorously as possible, paying careful attention to any potential confounding variables .

The four most common quantitative research design types are descriptive, correlational, experimental and quasi-experimental.

Research Design: Qualitative Studies

There are many different research design types when it comes to qualitative studies, but here we’ll narrow our focus to explore the “Big 4”. Specifically, we’ll look at phenomenological design, grounded theory design, ethnographic design, and case study design.

Phenomenological Research Design

Phenomenological design involves exploring the meaning of lived experiences and how they are perceived by individuals. This type of research design seeks to understand people’s perspectives , emotions, and behaviours in specific situations. Here, the aim for researchers is to uncover the essence of human experience without making any assumptions or imposing preconceived ideas on their subjects.

For example, you could adopt a phenomenological design to study why cancer survivors have such varied perceptions of their lives after overcoming their disease. This could be achieved by interviewing survivors and then analysing the data using a qualitative analysis method such as thematic analysis to identify commonalities and differences.

Phenomenological research design typically involves in-depth interviews or open-ended questionnaires to collect rich, detailed data about participants’ subjective experiences. This richness is one of the key strengths of phenomenological research design but, naturally, it also has limitations. These include potential biases in data collection and interpretation and the lack of generalisability of findings to broader populations.

Grounded Theory Research Design

Grounded theory (also referred to as “GT”) aims to develop theories by continuously and iteratively analysing and comparing data collected from a relatively large number of participants in a study. It takes an inductive (bottom-up) approach, with a focus on letting the data “speak for itself”, without being influenced by preexisting theories or the researcher’s preconceptions.

As an example, let’s assume your research aims involved understanding how people cope with chronic pain from a specific medical condition, with a view to developing a theory around this. In this case, grounded theory design would allow you to explore this concept thoroughly without preconceptions about what coping mechanisms might exist. You may find that some patients prefer cognitive-behavioural therapy (CBT) while others prefer to rely on herbal remedies. Based on multiple, iterative rounds of analysis, you could then develop a theory in this regard, derived directly from the data (as opposed to other preexisting theories and models).

Grounded theory typically involves collecting data through interviews or observations and then analysing it to identify patterns and themes that emerge from the data. These emerging ideas are then validated by collecting more data until a saturation point is reached (i.e., no new information can be squeezed from the data). From that base, a theory can then be developed .

As you can see, grounded theory is ideally suited to studies where the research aims involve theory generation , especially in under-researched areas. Keep in mind though that this type of research design can be quite time-intensive , given the need for multiple rounds of data collection and analysis.

research designs

Ethnographic Research Design

Ethnographic design involves observing and studying a culture-sharing group of people in their natural setting to gain insight into their behaviours, beliefs, and values. The focus here is on observing participants in their natural environment (as opposed to a controlled environment). This typically involves the researcher spending an extended period of time with the participants in their environment, carefully observing and taking field notes .

All of this is not to say that ethnographic research design relies purely on observation. On the contrary, this design typically also involves in-depth interviews to explore participants’ views, beliefs, etc. However, unobtrusive observation is a core component of the ethnographic approach.

As an example, an ethnographer may study how different communities celebrate traditional festivals or how individuals from different generations interact with technology differently. This may involve a lengthy period of observation, combined with in-depth interviews to further explore specific areas of interest that emerge as a result of the observations that the researcher has made.

As you can probably imagine, ethnographic research design has the ability to provide rich, contextually embedded insights into the socio-cultural dynamics of human behaviour within a natural, uncontrived setting. Naturally, however, it does come with its own set of challenges, including researcher bias (since the researcher can become quite immersed in the group), participant confidentiality and, predictably, ethical complexities . All of these need to be carefully managed if you choose to adopt this type of research design.

Case Study Design

With case study research design, you, as the researcher, investigate a single individual (or a single group of individuals) to gain an in-depth understanding of their experiences, behaviours or outcomes. Unlike other research designs that are aimed at larger sample sizes, case studies offer a deep dive into the specific circumstances surrounding a person, group of people, event or phenomenon, generally within a bounded setting or context .

As an example, a case study design could be used to explore the factors influencing the success of a specific small business. This would involve diving deeply into the organisation to explore and understand what makes it tick – from marketing to HR to finance. In terms of data collection, this could include interviews with staff and management, review of policy documents and financial statements, surveying customers, etc.

While the above example is focused squarely on one organisation, it’s worth noting that case study research designs can have different variation s, including single-case, multiple-case and longitudinal designs. As you can see in the example, a single-case design involves intensely examining a single entity to understand its unique characteristics and complexities. Conversely, in a multiple-case design , multiple cases are compared and contrasted to identify patterns and commonalities. Lastly, in a longitudinal case design , a single case or multiple cases are studied over an extended period of time to understand how factors develop over time.

As you can see, a case study research design is particularly useful where a deep and contextualised understanding of a specific phenomenon or issue is desired. However, this strength is also its weakness. In other words, you can’t generalise the findings from a case study to the broader population. So, keep this in mind if you’re considering going the case study route.

Case study design often involves investigating an individual to gain an in-depth understanding of their experiences, behaviours or outcomes.

How To Choose A Research Design

Having worked through all of these potential research designs, you’d be forgiven for feeling a little overwhelmed and wondering, “ But how do I decide which research design to use? ”. While we could write an entire post covering that alone, here are a few factors to consider that will help you choose a suitable research design for your study.

Data type: The first determining factor is naturally the type of data you plan to be collecting – i.e., qualitative or quantitative. This may sound obvious, but we have to be clear about this – don’t try to use a quantitative research design on qualitative data (or vice versa)!

Research aim(s) and question(s): As with all methodological decisions, your research aim and research questions will heavily influence your research design. For example, if your research aims involve developing a theory from qualitative data, grounded theory would be a strong option. Similarly, if your research aims involve identifying and measuring relationships between variables, one of the experimental designs would likely be a better option.

Time: It’s essential that you consider any time constraints you have, as this will impact the type of research design you can choose. For example, if you’ve only got a month to complete your project, a lengthy design such as ethnography wouldn’t be a good fit.

Resources: Take into account the resources realistically available to you, as these need to factor into your research design choice. For example, if you require highly specialised lab equipment to execute an experimental design, you need to be sure that you’ll have access to that before you make a decision.

Keep in mind that when it comes to research, it’s important to manage your risks and play as conservatively as possible. If your entire project relies on you achieving a huge sample, having access to niche equipment or holding interviews with very difficult-to-reach participants, you’re creating risks that could kill your project. So, be sure to think through your choices carefully and make sure that you have backup plans for any existential risks. Remember that a relatively simple methodology executed well generally will typically earn better marks than a highly-complex methodology executed poorly.

research designs

Recap: Key Takeaways

We’ve covered a lot of ground here. Let’s recap by looking at the key takeaways:

  • Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data.
  • Research designs for quantitative studies include descriptive , correlational , experimental and quasi-experimenta l designs.
  • Research designs for qualitative studies include phenomenological , grounded theory , ethnographic and case study designs.
  • When choosing a research design, you need to consider a variety of factors, including the type of data you’ll be working with, your research aims and questions, your time and the resources available to you.

If you need a helping hand with your research design (or any other aspect of your research), check out our private coaching services .

research designs

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

10 Comments

Wei Leong YONG

Is there any blog article explaining more on Case study research design? Is there a Case study write-up template? Thank you.

Solly Khan

Thanks this was quite valuable to clarify such an important concept.

hetty

Thanks for this simplified explanations. it is quite very helpful.

Belz

This was really helpful. thanks

Imur

Thank you for your explanation. I think case study research design and the use of secondary data in researches needs to be talked about more in your videos and articles because there a lot of case studies research design tailored projects out there.

Please is there any template for a case study research design whose data type is a secondary data on your repository?

Sam Msongole

This post is very clear, comprehensive and has been very helpful to me. It has cleared the confusion I had in regard to research design and methodology.

Robyn Pritchard

This post is helpful, easy to understand, and deconstructs what a research design is. Thanks

kelebogile

how to cite this page

Peter

Thank you very much for the post. It is wonderful and has cleared many worries in my mind regarding research designs. I really appreciate .

ali

how can I put this blog as my reference(APA style) in bibliography part?

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Educational resources and simple solutions for your research journey

What is research design? Types, elements, and examples

What is Research Design? Understand Types of Research Design, with Examples

Have you been wondering “ what is research design ?” or “what are some research design examples ?” Are you unsure about the research design elements or which of the different types of research design best suit your study? Don’t worry! In this article, we’ve got you covered!   

Table of Contents

What is research design?  

Have you been wondering “ what is research design ?” or “what are some research design examples ?” Don’t worry! In this article, we’ve got you covered!  

A research design is the plan or framework used to conduct a research study. It involves outlining the overall approach and methods that will be used to collect and analyze data in order to answer research questions or test hypotheses. A well-designed research study should have a clear and well-defined research question, a detailed plan for collecting data, and a method for analyzing and interpreting the results. A well-thought-out research design addresses all these features.  

Research design elements  

Research design elements include the following:  

  • Clear purpose: The research question or hypothesis must be clearly defined and focused.  
  • Sampling: This includes decisions about sample size, sampling method, and criteria for inclusion or exclusion. The approach varies for different research design types .  
  • Data collection: This research design element involves the process of gathering data or information from the study participants or sources. It includes decisions about what data to collect, how to collect it, and the tools or instruments that will be used.  
  • Data analysis: All research design types require analysis and interpretation of the data collected. This research design element includes decisions about the statistical tests or methods that will be used to analyze the data, as well as any potential confounding variables or biases that may need to be addressed.  
  • Type of research methodology: This includes decisions about the overall approach for the study.  
  • Time frame: An important research design element is the time frame, which includes decisions about the duration of the study, the timeline for data collection and analysis, and follow-up periods.  
  • Ethical considerations: The research design must include decisions about ethical considerations such as informed consent, confidentiality, and participant protection.  
  • Resources: A good research design takes into account decisions about the budget, staffing, and other resources needed to carry out the study.  

The elements of research design should be carefully planned and executed to ensure the validity and reliability of the study findings. Let’s go deeper into the concepts of research design .    

research designs

Characteristics of research design  

Some basic characteristics of research design are common to different research design types . These characteristics of research design are as follows:  

  • Neutrality : Right from the study assumptions to setting up the study, a neutral stance must be maintained, free of pre-conceived notions. The researcher’s expectations or beliefs should not color the findings or interpretation of the findings. Accordingly, a good research design should address potential sources of bias and confounding factors to be able to yield unbiased and neutral results.   
  •   Reliability : Reliability is one of the characteristics of research design that refers to consistency in measurement over repeated measures and fewer random errors. A reliable research design must allow for results to be consistent, with few errors due to chance.   
  •   Validity : Validity refers to the minimization of nonrandom (systematic) errors. A good research design must employ measurement tools that ensure validity of the results.  
  •   Generalizability: The outcome of the research design should be applicable to a larger population and not just a small sample . A generalized method means the study can be conducted on any part of a population with similar accuracy.   
  •   Flexibility: A research design should allow for changes to be made to the research plan as needed, based on the data collected and the outcomes of the study  

A well-planned research design is critical for conducting a scientifically rigorous study that will generate neutral, reliable, valid, and generalizable results. At the same time, it should allow some level of flexibility.  

Different types of research design  

A research design is essential to systematically investigate, understand, and interpret phenomena of interest. Let’s look at different types of research design and research design examples .  

Broadly, research design types can be divided into qualitative and quantitative research.  

Qualitative research is subjective and exploratory. It determines relationships between collected data and observations. It is usually carried out through interviews with open-ended questions, observations that are described in words, etc.  

Quantitative research is objective and employs statistical approaches. It establishes the cause-and-effect relationship among variables using different statistical and computational methods. This type of research is usually done using surveys and experiments.  

Qualitative research vs. Quantitative research  

   
Deals with subjective aspects, e.g., experiences, beliefs, perspectives, and concepts.  Measures different types of variables and describes frequencies, averages, correlations, etc. 
Deals with non-numerical data, such as words, images, and observations.  Tests hypotheses about relationships between variables. Results are presented numerically and statistically. 
In qualitative research design, data are collected via direct observations, interviews, focus groups, and naturally occurring data. Methods for conducting qualitative research are grounded theory, thematic analysis, and discourse analysis. 

 

Quantitative research design is empirical. Data collection methods involved are experiments, surveys, and observations expressed in numbers. The research design categories under this are descriptive, experimental, correlational, diagnostic, and explanatory. 
Data analysis involves interpretation and narrative analysis.  Data analysis involves statistical analysis and hypothesis testing. 
The reasoning used to synthesize data is inductive. 

 

The reasoning used to synthesize data is deductive. 

 

Typically used in fields such as sociology, linguistics, and anthropology.  Typically used in fields such as economics, ecology, statistics, and medicine. 
Example: Focus group discussions with women farmers about climate change perception. 

 

Example: Testing the effectiveness of a new treatment for insomnia. 

Qualitative research design types and qualitative research design examples  

The following will familiarize you with the research design categories in qualitative research:  

  • Grounded theory: This design is used to investigate research questions that have not previously been studied in depth. Also referred to as exploratory design , it creates sequential guidelines, offers strategies for inquiry, and makes data collection and analysis more efficient in qualitative research.   

Example: A researcher wants to study how people adopt a certain app. The researcher collects data through interviews and then analyzes the data to look for patterns. These patterns are used to develop a theory about how people adopt that app.  

  •   Thematic analysis: This design is used to compare the data collected in past research to find similar themes in qualitative research.  

Example: A researcher examines an interview transcript to identify common themes, say, topics or patterns emerging repeatedly.  

  • Discourse analysis : This research design deals with language or social contexts used in data gathering in qualitative research.   

Example: Identifying ideological frameworks and viewpoints of writers of a series of policies.  

Quantitative research design types and quantitative research design examples  

Note the following research design categories in quantitative research:  

  • Descriptive research design : This quantitative research design is applied where the aim is to identify characteristics, frequencies, trends, and categories. It may not often begin with a hypothesis. The basis of this research type is a description of an identified variable. This research design type describes the “what,” “when,” “where,” or “how” of phenomena (but not the “why”).   

Example: A study on the different income levels of people who use nutritional supplements regularly.  

  • Correlational research design : Correlation reflects the strength and/or direction of the relationship among variables. The direction of a correlation can be positive or negative. Correlational research design helps researchers establish a relationship between two variables without the researcher controlling any of them.  

Example : An example of correlational research design could be studying the correlation between time spent watching crime shows and aggressive behavior in teenagers.  

  •   Diagnostic research design : In diagnostic design, the researcher aims to understand the underlying cause of a specific topic or phenomenon (usually an area of improvement) and find the most effective solution. In simpler terms, a researcher seeks an accurate “diagnosis” of a problem and identifies a solution.  

Example : A researcher analyzing customer feedback and reviews to identify areas where an app can be improved.    

  • Explanatory research design : In explanatory research design , a researcher uses their ideas and thoughts on a topic to explore their theories in more depth. This design is used to explore a phenomenon when limited information is available. It can help increase current understanding of unexplored aspects of a subject. It is thus a kind of “starting point” for future research.  

Example : Formulating hypotheses to guide future studies on delaying school start times for better mental health in teenagers.  

  •   Causal research design : This can be considered a type of explanatory research. Causal research design seeks to define a cause and effect in its data. The researcher does not use a randomly chosen control group but naturally or pre-existing groupings. Importantly, the researcher does not manipulate the independent variable.   

Example : Comparing school dropout levels and possible bullying events.  

  •   Experimental research design : This research design is used to study causal relationships . One or more independent variables are manipulated, and their effect on one or more dependent variables is measured.  

Example: Determining the efficacy of a new vaccine plan for influenza.  

Benefits of research design  

 T here are numerous benefits of research design . These are as follows:  

  • Clear direction: Among the benefits of research design , the main one is providing direction to the research and guiding the choice of clear objectives, which help the researcher to focus on the specific research questions or hypotheses they want to investigate.  
  • Control: Through a proper research design , researchers can control variables, identify potential confounding factors, and use randomization to minimize bias and increase the reliability of their findings.
  • Replication: Research designs provide the opportunity for replication. This helps to confirm the findings of a study and ensures that the results are not due to chance or other factors. Thus, a well-chosen research design also eliminates bias and errors.  
  • Validity: A research design ensures the validity of the research, i.e., whether the results truly reflect the phenomenon being investigated.  
  • Reliability: Benefits of research design also include reducing inaccuracies and ensuring the reliability of the research (i.e., consistency of the research results over time, across different samples, and under different conditions).  
  • Efficiency: A strong research design helps increase the efficiency of the research process. Researchers can use a variety of designs to investigate their research questions, choose the most appropriate research design for their study, and use statistical analysis to make the most of their data. By effectively describing the data necessary for an adequate test of the hypotheses and explaining how such data will be obtained, research design saves a researcher’s time.   

Overall, an appropriately chosen and executed research design helps researchers to conduct high-quality research, draw meaningful conclusions, and contribute to the advancement of knowledge in their field.

research designs

Frequently Asked Questions (FAQ) on Research Design

Q: What are th e main types of research design?

Broadly speaking there are two basic types of research design –

qualitative and quantitative research. Qualitative research is subjective and exploratory; it determines relationships between collected data and observations. It is usually carried out through interviews with open-ended questions, observations that are described in words, etc. Quantitative research , on the other hand, is more objective and employs statistical approaches. It establishes the cause-and-effect relationship among variables using different statistical and computational methods. This type of research design is usually done using surveys and experiments.

Q: How do I choose the appropriate research design for my study?

Choosing the appropriate research design for your study requires careful consideration of various factors. Start by clarifying your research objectives and the type of data you need to collect. Determine whether your study is exploratory, descriptive, or experimental in nature. Consider the availability of resources, time constraints, and the feasibility of implementing the different research designs. Review existing literature to identify similar studies and their research designs, which can serve as a guide. Ultimately, the chosen research design should align with your research questions, provide the necessary data to answer them, and be feasible given your own specific requirements/constraints.

Q: Can research design be modified during the course of a study?

Yes, research design can be modified during the course of a study based on emerging insights, practical constraints, or unforeseen circumstances. Research is an iterative process and, as new data is collected and analyzed, it may become necessary to adjust or refine the research design. However, any modifications should be made judiciously and with careful consideration of their impact on the study’s integrity and validity. It is advisable to document any changes made to the research design, along with a clear rationale for the modifications, in order to maintain transparency and allow for proper interpretation of the results.

Q: How can I ensure the validity and reliability of my research design?

Validity refers to the accuracy and meaningfulness of your study’s findings, while reliability relates to the consistency and stability of the measurements or observations. To enhance validity, carefully define your research variables, use established measurement scales or protocols, and collect data through appropriate methods. Consider conducting a pilot study to identify and address any potential issues before full implementation. To enhance reliability, use standardized procedures, conduct inter-rater or test-retest reliability checks, and employ appropriate statistical techniques for data analysis. It is also essential to document and report your methodology clearly, allowing for replication and scrutiny by other researchers.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

IMRAD format

What is IMRaD Format in Research?

ChatGPT for research

How to Use ChatGPT for Research?

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research designs

Home Market Research Research Tools and Apps

Research Design: What it is, Elements & Types

Research Design

Can you imagine doing research without a plan? Probably not. When we discuss a strategy to collect, study, and evaluate data, we talk about research design. This design addresses problems and creates a consistent and logical model for data analysis. Let’s learn more about it.

What is Research Design?

Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success.

Creating a research topic explains the type of research (experimental,  survey research ,  correlational , semi-experimental, review) and its sub-type (experimental design, research problem , descriptive case-study). 

There are three main types of designs for research:

  • Data collection
  • Measurement
  • Data Analysis

The research problem an organization faces will determine the design, not vice-versa. The design phase of a study determines which tools to use and how they are used.

The Process of Research Design

The research design process is a systematic and structured approach to conducting research. The process is essential to ensure that the study is valid, reliable, and produces meaningful results.

  • Consider your aims and approaches: Determine the research questions and objectives, and identify the theoretical framework and methodology for the study.
  • Choose a type of Research Design: Select the appropriate research design, such as experimental, correlational, survey, case study, or ethnographic, based on the research questions and objectives.
  • Identify your population and sampling method: Determine the target population and sample size, and choose the sampling method, such as random , stratified random sampling , or convenience sampling.
  • Choose your data collection methods: Decide on the data collection methods , such as surveys, interviews, observations, or experiments, and select the appropriate instruments or tools for collecting data.
  • Plan your data collection procedures: Develop a plan for data collection, including the timeframe, location, and personnel involved, and ensure ethical considerations.
  • Decide on your data analysis strategies: Select the appropriate data analysis techniques, such as statistical analysis , content analysis, or discourse analysis, and plan how to interpret the results.

The process of research design is a critical step in conducting research. By following the steps of research design, researchers can ensure that their study is well-planned, ethical, and rigorous.

Research Design Elements

Impactful research usually creates a minimum bias in data and increases trust in the accuracy of collected data. A design that produces the slightest margin of error in experimental research is generally considered the desired outcome. The essential elements are:

  • Accurate purpose statement
  • Techniques to be implemented for collecting and analyzing research
  • The method applied for analyzing collected details
  • Type of research methodology
  • Probable objections to research
  • Settings for the research study
  • Measurement of analysis

Characteristics of Research Design

A proper design sets your study up for success. Successful research studies provide insights that are accurate and unbiased. You’ll need to create a survey that meets all of the main characteristics of a design. There are four key characteristics:

Characteristics of Research Design

  • Neutrality: When you set up your study, you may have to make assumptions about the data you expect to collect. The results projected in the research should be free from research bias and neutral. Understand opinions about the final evaluated scores and conclusions from multiple individuals and consider those who agree with the results.
  • Reliability: With regularly conducted research, the researcher expects similar results every time. You’ll only be able to reach the desired results if your design is reliable. Your plan should indicate how to form research questions to ensure the standard of results.
  • Validity: There are multiple measuring tools available. However, the only correct measuring tools are those which help a researcher in gauging results according to the objective of the research. The  questionnaire  developed from this design will then be valid.
  • Generalization:  The outcome of your design should apply to a population and not just a restricted sample . A generalized method implies that your survey can be conducted on any part of a population with similar accuracy.

The above factors affect how respondents answer the research questions, so they should balance all the above characteristics in a good design. If you want, you can also learn about Selection Bias through our blog.

Research Design Types

A researcher must clearly understand the various types to select which model to implement for a study. Like the research itself, the design of your analysis can be broadly classified into quantitative and qualitative.

Qualitative research

Qualitative research determines relationships between collected data and observations based on mathematical calculations. Statistical methods can prove or disprove theories related to a naturally existing phenomenon. Researchers rely on qualitative observation research methods that conclude “why” a particular theory exists and “what” respondents have to say about it.

Quantitative research

Quantitative research is for cases where statistical conclusions to collect actionable insights are essential. Numbers provide a better perspective for making critical business decisions. Quantitative research methods are necessary for the growth of any organization. Insights drawn from complex numerical data and analysis prove to be highly effective when making decisions about the business’s future.

Qualitative Research vs Quantitative Research

Here is a chart that highlights the major differences between qualitative and quantitative research:

Qualitative ResearchQuantitative Research
Focus on explaining and understanding experiences and perspectives.Focus on quantifying and measuring phenomena.
Use of non-numerical data, such as words, images, and observations.Use of numerical data, such as statistics and surveys.
Usually uses small sample sizes.Usually uses larger sample sizes.
Typically emphasizes in-depth exploration and interpretation.Typically emphasizes precision and objectivity.
Data analysis involves interpretation and narrative analysis.Data analysis involves statistical analysis and hypothesis testing.
Results are presented descriptively.Results are presented numerically and statistically.

In summary or analysis , the step of qualitative research is more exploratory and focuses on understanding the subjective experiences of individuals, while quantitative research is more focused on objective data and statistical analysis.

You can further break down the types of research design into five categories:

types of research design

1. Descriptive: In a descriptive composition, a researcher is solely interested in describing the situation or case under their research study. It is a theory-based design method created by gathering, analyzing, and presenting collected data. This allows a researcher to provide insights into the why and how of research. Descriptive design helps others better understand the need for the research. If the problem statement is not clear, you can conduct exploratory research. 

2. Experimental: Experimental research establishes a relationship between the cause and effect of a situation. It is a causal research design where one observes the impact caused by the independent variable on the dependent variable. For example, one monitors the influence of an independent variable such as a price on a dependent variable such as customer satisfaction or brand loyalty. It is an efficient research method as it contributes to solving a problem.

The independent variables are manipulated to monitor the change it has on the dependent variable. Social sciences often use it to observe human behavior by analyzing two groups. Researchers can have participants change their actions and study how the people around them react to understand social psychology better.

3. Correlational research: Correlational research  is a non-experimental research technique. It helps researchers establish a relationship between two closely connected variables. There is no assumption while evaluating a relationship between two other variables, and statistical analysis techniques calculate the relationship between them. This type of research requires two different groups.

A correlation coefficient determines the correlation between two variables whose values range between -1 and +1. If the correlation coefficient is towards +1, it indicates a positive relationship between the variables, and -1 means a negative relationship between the two variables. 

4. Diagnostic research: In diagnostic design, the researcher is looking to evaluate the underlying cause of a specific topic or phenomenon. This method helps one learn more about the factors that create troublesome situations. 

This design has three parts of the research:

  • Inception of the issue
  • Diagnosis of the issue
  • Solution for the issue

5. Explanatory research : Explanatory design uses a researcher’s ideas and thoughts on a subject to further explore their theories. The study explains unexplored aspects of a subject and details the research questions’ what, how, and why.

Benefits of Research Design

There are several benefits of having a well-designed research plan. Including:

  • Clarity of research objectives: Research design provides a clear understanding of the research objectives and the desired outcomes.
  • Increased validity and reliability: To ensure the validity and reliability of results, research design help to minimize the risk of bias and helps to control extraneous variables.
  • Improved data collection: Research design helps to ensure that the proper data is collected and data is collected systematically and consistently.
  • Better data analysis: Research design helps ensure that the collected data can be analyzed effectively, providing meaningful insights and conclusions.
  • Improved communication: A well-designed research helps ensure the results are clean and influential within the research team and external stakeholders.
  • Efficient use of resources: reducing the risk of waste and maximizing the impact of the research, research design helps to ensure that resources are used efficiently.

A well-designed research plan is essential for successful research, providing clear and meaningful insights and ensuring that resources are practical.

QuestionPro offers a comprehensive solution for researchers looking to conduct research. With its user-friendly interface, robust data collection and analysis tools, and the ability to integrate results from multiple sources, QuestionPro provides a versatile platform for designing and executing research projects.

Our robust suite of research tools provides you with all you need to derive research results. Our online survey platform includes custom point-and-click logic and advanced question types. Uncover the insights that matter the most.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

research designs

Life@QuestionPro: Thomas Maiwald-Immer’s Experience

Aug 9, 2024

Top 13 Reporting Tools to Transform Your Data Insights & More

Top 13 Reporting Tools to Transform Your Data Insights & More

Aug 8, 2024

Employee satisfaction

Employee Satisfaction: How to Boost Your  Workplace Happiness?

Aug 7, 2024

jotform vs formstack

Jotform vs Formstack: Which Form Builder Should You Choose?

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative approach Quantitative approach

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

Type of design Purpose and characteristics
Experimental
Quasi-experimental
Correlational
Descriptive

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Type of design Purpose and characteristics
Grounded theory
Phenomenology

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling Non-probability sampling

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Questionnaires Interviews

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Quantitative observation

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

Field Examples of data collection methods
Media & communication Collecting a sample of texts (e.g., speeches, articles, or social media posts) for data on cultural norms and narratives
Psychology Using technologies like neuroimaging, eye-tracking, or computer-based tasks to collect data on things like attention, emotional response, or reaction time
Education Using tests or assignments to collect data on knowledge and skills
Physical sciences Using scientific instruments to collect data on things like weight, blood pressure, or chemical composition

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

Reliability Validity

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

Approach Characteristics
Thematic analysis
Discourse analysis

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 5 August 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

What is Research Design? Characteristics, Types, Process, & Examples

Link Copied

Share on Facebook

Share on Twitter

Share on LinkedIn

What is Research Design? Characteristics, Types, Process, & Examples

Your search has come to an end!

Ever felt like a hamster on a research wheel fast, spinning with a million questions but going nowhere? You've got your topic; you're brimming with curiosity, but... what next? So, forget the research rut and get your papers! This ultimate guide to "what is research design?" will have you navigating your project like a pro, uncovering answers and avoiding dead ends. Know the features of good research design, what you mean by research design, elements of research design, and more.

What is Research Design?

Before starting with the topic, do you know what is research design? Research design is the structure of research methods and techniques selected to conduct a study. It refines the methods suited to the subject and ensures a successful setup. Defining a research topic clarifies the type of research (experimental, survey research, correlational, semi-experimental, review) and its sub-type (experimental design, research problem, descriptive case-study).

There are three main types of designs for research:

1. Data Collection

2. Measurement

3. Data Analysis

Elements of Research Design 

Now that you know what is research design, it is important to know the elements and components of research design. Impactful research minimises bias and enhances data accuracy. Designs with minimal error margins are ideal. Key elements include:

1. Accurate purpose statement

2. Techniques for data collection and analysis

3. Methods for data analysis

4. Type of research methodology

5. Probable objections to research

6. Research settings

7. Timeline

8. Measurement of analysis

Got a hang of research, now book yout student accommodation with one click!

Book through amber today!

Characteristics of Research Design

Research design has several key characteristics that contribute to the validity, reliability, and overall success of a research study. To know the answer for what is research design, it is important to know the characteristics. These are-

1. Reliability

A reliable research design ensures that each study’s results are accurate and can be replicated. This means that if the research is conducted again under the same conditions, it should yield similar results.

2. Validity

A valid research design uses appropriate measuring tools to gauge the results according to the research objective. This ensures that the data collected and the conclusions drawn are relevant and accurately reflect the phenomenon being studied.

3. Neutrality

A neutral research design ensures that the assumptions made at the beginning of the research are free from bias. This means that the data collected throughout the research is based on these unbiased assumptions.

4. Generalizability

A good research design draws an outcome that can be applied to a large set of people and is not limited to the sample size or the research group.

Research Design Process

What is research design? A good research helps you do a really good study that gives fair, trustworthy, and useful results. But it's also good to have a bit of wiggle room for changes. If you’re wondering how to conduct a research in just 5 mins , here's a breakdown and examples to work even better.

1. Consider Aims and Approaches

Define the research questions and objectives, and establish the theoretical framework and methodology.

2. Choose a Type of Research Design

Select the suitable research design, such as experimental, correlational, survey, case study, or ethnographic, according to the research questions and objectives.

3. Identify Population and Sampling Method

Determine the target population and sample size, and select the sampling method, like random, stratified random sampling, or convenience sampling.

4. Choose Data Collection Methods

Decide on the data collection methods, such as surveys, interviews, observations, or experiments, and choose the appropriate instruments for data collection.

5. Plan Data Collection Procedures

Create a plan for data collection, detailing the timeframe, location, and personnel involved, while ensuring ethical considerations are met.

6. Decide on Data Analysis Strategies

Select the appropriate data analysis techniques, like statistical analysis, content analysis, or discourse analysis, and plan the interpretation of the results.

What are the Types of Research Design?

A researcher must grasp various types to decide which model to use for a study. There are different research designs that can be broadly classified into quantitative and qualitative.

Qualitative Research

Qualitative research identifies relationships between collected data and observations through mathematical calculations. Statistical methods validate or refute theories about natural phenomena. This research method answers "why" a theory exists and explores respondents' perspectives.

Quantitative Research

Quantitative research is essential when statistical conclusions are needed to gather actionable insights. Numbers provide clarity for critical business decisions. This method is crucial for organizational growth, with insights from complex numerical data guiding future business decisions.

Qualitative Research vs Quantitative Research

While researching, it is important to know the difference between qualitative and quantitative research. Here's a quick difference between the two:

amber

Aspect Qualitative Research  Quantitative Research
Data Type Non-numerical data such as words, images, and sounds. Numerical data that can be measured and expressed in numerical terms.
Purpose To understand concepts, thoughts, or experiences. To test hypotheses, identify patterns, and make predictions.
Data Collection Common methods include interviews with open-ended questions, observations described in words, and literature reviews. Common methods include surveys with closed-ended questions, experiments, and observations recorded as numbers.
Data Analysis Data is analyzed using grounded theory or thematic analysis. Data is analyzed using statistical methods.
Outcome Produces rich and detailed descriptions of the phenomenon being studied, and uncovers new insights and meanings. Produces objective, empirical data that can be measured.

The research types can be further divided into 5 categories:

1. Descriptive Research

Descriptive research design focuses on detailing a situation or case. It's a theory-driven method that involves gathering, analysing, and presenting data. This approach offers insights into the reasons and mechanisms behind a research subject, enhancing understanding of the research's importance. When the problem statement is unclear, exploratory research can be conducted.

2. Experimental Research

Experimental research design investigates cause-and-effect relationships. It’s a causal design where the impact of an independent variable on a dependent variable is observed. For example, the effect of price on customer satisfaction. This method efficiently addresses problems by manipulating independent variables to see their effect on dependent variables. Often used in social sciences, it involves analysing human behaviour by studying changes in one group's actions and their impact on another group.

3. Correlational Research

Correlational research design is a non-experimental technique that identifies relationships between closely linked variables. It uses statistical analysis to determine these relationships without assumptions. This method requires two different groups. A correlation coefficient between -1 and +1 indicates the strength and direction of the relationship, with +1 showing a positive correlation and -1 a negative correlation.

4. Diagnostic Research

Diagnostic research design aims to identify the underlying causes of specific issues. This method delves into factors creating problematic situations and has three phases: 

  • Issue inception
  • Issue diagnosis
  • Issue resolution

5. Explanatory Research

Explanatory research design builds on a researcher’s ideas to explore theories further. It seeks to explain the unexplored aspects of a subject, addressing the what, how, and why of research questions.

Benefits of Research Design

After learning about what is research design and the process, it is important to know the key benefits of a well-structured research design:

1. Minimises Risk of Errors: A good research design minimises the risk of errors and reduces inaccuracy. It ensures that the study is carried out in the right direction and that all the team members are on the same page.

2. Efficient Use of Resources: It facilitates a concrete research plan for the efficient use of time and resources. It helps the researcher better complete all the tasks, even with limited resources.

3. Provides Direction: The purpose of the research design is to enable the researcher to proceed in the right direction without deviating from the tasks. It helps to identify the major and minor tasks of the study.

4. Ensures Validity and Reliability: A well-designed research enhances the validity and reliability of the findings and allows for the replication of studies by other researchers. The main advantage of a good research design is that it provides accuracy, reliability, consistency, and legitimacy to the research.

5. Facilitates Problem-Solving: A researcher can easily frame the objectives of the research work based on the design of experiments (research design). A good research design helps the researcher find the best solution for the research problems.

6. Better Documentation: It helps in better documentation of the various activities while the project work is going on.

That's it! You've explored all the answers for what is research design in research? Remember, it's not just about picking a fancy method – it's about choosing the perfect tool to answer your burning questions. By carefully considering your goals and resources, you can design a research plan that gathers reliable information and helps you reach clear conclusions. 

Frequently Asked Questions

What are the key components of a research design, how can i choose the best research design for my study, what are some common pitfalls in research design, and how can they be avoided, how does research design impact the validity and reliability of a study, what ethical considerations should be taken into account in research design.

Your ideal student home & a flight ticket awaits

Follow us on :

cta

Related Posts

research designs

Top 12 Creative Side Hustles to Start This Year

research designs

Explore The Top 10 Tuition Free Universities in Germany

research designs

What Is A Sandwich Course?

research designs

amber © 2024. All rights reserved.

4.8/5 on Trustpilot

Rated as "Excellent" • 4800+ Reviews by students

Rated as "Excellent" • 4800+ Reviews by Students

play store

The Four Types of Research Design — Everything You Need to Know

Jenny Romanchuk

Updated: July 23, 2024

Published: January 18, 2023

When you conduct research, you need to have a clear idea of what you want to achieve and how to accomplish it. A good research design enables you to collect accurate and reliable data to draw valid conclusions.

research design used to test different beauty products

In this blog post, we'll outline the key features of the four common types of research design with real-life examples from UnderArmor, Carmex, and more. Then, you can easily choose the right approach for your project.

Table of Contents

What is research design?

The four types of research design, research design examples.

Research design is the process of planning and executing a study to answer specific questions. This process allows you to test hypotheses in the business or scientific fields.

Research design involves choosing the right methodology, selecting the most appropriate data collection methods, and devising a plan (or framework) for analyzing the data. In short, a good research design helps us to structure our research.

Marketers use different types of research design when conducting research .

There are four common types of research design — descriptive, correlational, experimental, and diagnostic designs. Let’s take a look at each in more detail.

Researchers use different designs to accomplish different research objectives. Here, we'll discuss how to choose the right type, the benefits of each, and use cases.

Research can also be classified as quantitative or qualitative at a higher level. Some experiments exhibit both qualitative and quantitative characteristics.

research designs

Free Market Research Kit

5 Research and Planning Templates + a Free Guide on How to Use Them in Your Market Research

  • SWOT Analysis Template
  • Survey Template
  • Focus Group Template

Download Free

All fields are required.

You're all set!

Click this link to access this resource at any time.

Experimental

An experimental design is used when the researcher wants to examine how variables interact with each other. The researcher manipulates one variable (the independent variable) and observes the effect on another variable (the dependent variable).

In other words, the researcher wants to test a causal relationship between two or more variables.

In marketing, an example of experimental research would be comparing the effects of a television commercial versus an online advertisement conducted in a controlled environment (e.g. a lab). The objective of the research is to test which advertisement gets more attention among people of different age groups, gender, etc.

Another example is a study of the effect of music on productivity. A researcher assigns participants to one of two groups — those who listen to music while working and those who don't — and measure their productivity.

The main benefit of an experimental design is that it allows the researcher to draw causal relationships between variables.

One limitation: This research requires a great deal of control over the environment and participants, making it difficult to replicate in the real world. In addition, it’s quite costly.

Best for: Testing a cause-and-effect relationship (i.e., the effect of an independent variable on a dependent variable).

Correlational

A correlational design examines the relationship between two or more variables without intervening in the process.

Correlational design allows the analyst to observe natural relationships between variables. This results in data being more reflective of real-world situations.

For example, marketers can use correlational design to examine the relationship between brand loyalty and customer satisfaction. In particular, the researcher would look for patterns or trends in the data to see if there is a relationship between these two entities.

Similarly, you can study the relationship between physical activity and mental health. The analyst here would ask participants to complete surveys about their physical activity levels and mental health status. Data would show how the two variables are related.

Best for: Understanding the extent to which two or more variables are associated with each other in the real world.

Descriptive

Descriptive research refers to a systematic process of observing and describing what a subject does without influencing them.

Methods include surveys, interviews, case studies, and observations. Descriptive research aims to gather an in-depth understanding of a phenomenon and answers when/what/where.

SaaS companies use descriptive design to understand how customers interact with specific features. Findings can be used to spot patterns and roadblocks.

For instance, product managers can use screen recordings by Hotjar to observe in-app user behavior. This way, the team can precisely understand what is happening at a certain stage of the user journey and act accordingly.

Brand24, a social listening tool, tripled its sign-up conversion rate from 2.56% to 7.42%, thanks to locating friction points in the sign-up form through screen recordings.

different types of research design: descriptive research example.

Carma Laboratories worked with research company MMR to measure customers’ reactions to the lip-care company’s packaging and product . The goal was to find the cause of low sales for a recently launched line extension in Europe.

The team moderated a live, online focus group. Participants were shown w product samples, while AI and NLP natural language processing identified key themes in customer feedback.

This helped uncover key reasons for poor performance and guided changes in packaging.

research design example, tweezerman

FAQ: Research Design & Method

What is the difference between Research Design and Research Method?

Research design is a plan to answer your research question.  A research method is a strategy used to implement that plan.  Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively.

Which research method should I choose ?

It depends on your research goal.  It depends on what subjects (and who) you want to study.  Let's say you are interested in studying what makes people happy, or why some students are more conscious about recycling on campus.  To answer these questions, you need to make a decision about how to collect your data.  Most frequently used methods include:

  • Observation / Participant Observation
  • Focus Groups
  • Experiments
  • Secondary Data Analysis / Archival Study
  • Mixed Methods (combination of some of the above)

One particular method could be better suited to your research goal than others, because the data you collect from different methods will be different in quality and quantity.   For instance, surveys are usually designed to produce relatively short answers, rather than the extensive responses expected in qualitative interviews.

What other factors should I consider when choosing one method over another?

Time for data collection and analysis is something you want to consider.  An observation or interview method, so-called qualitative approach, helps you collect richer information, but it takes time.  Using a survey helps you collect more data quickly, yet it may lack details.  So, you will need to consider the time you have for research and the balance between strengths and weaknesses associated with each method (e.g., qualitative vs. quantitative).

  • << Previous: Introduction
  • Next: Survey Research >>
  • Last Updated: Aug 21, 2023 10:42 AM

Sacred Heart University Library

Organizing Academic Research Papers: Types of Research Designs

  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Executive Summary
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tertiary Sources
  • What Is Scholarly vs. Popular?
  • Qualitative Methods
  • Quantitative Methods
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Annotated Bibliography
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • How to Manage Group Projects
  • Multiple Book Review Essay
  • Reviewing Collected Essays
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Research Proposal
  • Acknowledgements

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy that you choose to integrate the different components of the study in a coherent and logical way, thereby, ensuring you will effectively address the research problem; it constitutes the blueprint for the collection, measurement, and analysis of data. Note that your research problem determines the type of design you can use, not the other way around!

General Structure and Writing Style

Action research design, case study design, causal design, cohort design, cross-sectional design, descriptive design, experimental design, exploratory design, historical design, longitudinal design, observational design, philosophical design, sequential design.

Kirshenblatt-Gimblett, Barbara. Part 1, What Is Research Design? The Context of Design. Performance Studies Methods Course syllabus . New York University, Spring 2006; Trochim, William M.K. Research Methods Knowledge Base . 2006.

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem as unambiguously as possible. In social sciences research, obtaining evidence relevant to the research problem generally entails specifying the type of evidence needed to test a theory, to evaluate a program, or to accurately describe a phenomenon. However, researchers can often begin their investigations far too early, before they have thought critically about about what information is required to answer the study's research questions. Without attending to these design issues beforehand, the conclusions drawn risk being weak and unconvincing and, consequently, will fail to adequate address the overall research problem.

 Given this, the length and complexity of research designs can vary considerably, but any sound design will do the following things:

  • Identify the research problem clearly and justify its selection,
  • Review previously published literature associated with the problem area,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem selected,
  • Effectively describe the data which will be necessary for an adequate test of the hypotheses and explain how such data will be obtained, and
  • Describe the methods of analysis which will be applied to the data in determining whether or not the hypotheses are true or false.

Kirshenblatt-Gimblett, Barbara. Part 1, What Is Research Design? The Context of Design. Performance Studies Methods Course syllabus . New Yortk University, Spring 2006.

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out (the action in Action Research) during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and the cyclic process repeats, continuing until a sufficient understanding of (or implement able solution for) the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you?

  • A collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research rather than testing theories.
  • When practitioners use action research it has the potential to increase the amount they learn consciously from their experience. The action research cycle can also be regarded as a learning cycle.
  • Action search studies often have direct and obvious relevance to practice.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you?

  • It is harder to do than conducting conventional studies because the researcher takes on responsibilities for encouraging change as well as for research.
  • Action research is much harder to write up because you probably can’t use a standard format to report your findings effectively.
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action (e.g. change) and research (e.g. understanding) is time-consuming and complex to conduct.

Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Locoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605.; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about a phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a vaiety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and extension of methods.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • The intense exposure to study of the case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your intepretation of the findings can only apply to that particular case.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association--a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order--to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness--a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs helps researchers understand why the world works the way it does through the process of proving a causal link between variables and eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are casual! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and therefore to establish which variable is the actual cause and which is the  actual effect.

Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed.  Thousand Oaks, CA: Pine Forge Press, 2007; Causal Research Design: Experimentation. Anonymous SlideShare Presentation ; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base . 2006.

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, r ather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors  often relies on cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Because of the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36;  Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Study Design 101 . Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study . Wikipedia.

Cross-sectional research designs have three distinctive features: no time dimension, a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure diffrerences between or from among a variety of people, subjects, or phenomena rather than change. As such, researchers using this design can only employ a relative passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike the experimental design where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • Provide only a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods. Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design, Application, Strengths and Weaknesses of Cross-Sectional Studies . Healthknowledge, 2009. Cross-Sectional Study . Wikipedia.

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject.
  • Descriptive research is often used as a pre-cursor to more quantitatively research designs, the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research can not be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999;  McNabb, Connie. Descriptive Research Methodologies . Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design , September 26, 2008. Explorable.com website.

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental Research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “what causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter subject behaviors or responses.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to  experimental designed research studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs . School of Psychology, University of New England, 2000; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Trochim, William M.K. Experimental Design . Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research . Slideshare presentation.

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to. The focus is on gaining insights and familiarity for later investigation or undertaken when problems are in a preliminary stage of investigation.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumption, development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • Exploratory studies help establish research priorities.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value in decision-making.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research . Wikipedia.

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute your hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, logs, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistentally to ensure access.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

A longitudinal study follows the same sample over time and makes repeated observations. With longitudinal surveys, for example, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study and is sometimes referred to as a panel study.

  • Longitudinal data allow the analysis of duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research to explain fluctuations in the data.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study . Wikipedia.

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe (data is emergent rather than pre-existing).
  • The researcher is able to collect a depth of information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation researchd esigns account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possiblility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is studied is altered to some degree by the very presence of the researcher, therefore, skewing to some degree any data collected (the Heisenburg Uncertainty Principle).

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010.

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, on what does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Chapter 4, Research Methodology and Design . Unisa Institutional Repository (UnisaIR), University of South Africa;  Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, D.C.: Falmer Press, 1994; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method. Useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce extensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more sample can be difficult.
  • Because the sampling technique is not randomized, the design cannot be used to create conclusions and interpretations that pertain to an entire population. Generalizability from findings is limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Rebecca Betensky, Harvard University, Course Lecture Note slides ; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis . Wikipedia.  

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: Jul 18, 2023 11:58 AM
  • URL: https://library.sacredheart.edu/c.php?g=29803
  • QuickSearch
  • Library Catalog
  • Databases A-Z
  • Publication Finder
  • Course Reserves
  • Citation Linker
  • Digital Commons
  • Our Website

Research Support

  • Ask a Librarian
  • Appointments
  • Interlibrary Loan (ILL)
  • Research Guides
  • Databases by Subject
  • Citation Help

Using the Library

  • Reserve a Group Study Room
  • Renew Books
  • Honors Study Rooms
  • Off-Campus Access
  • Library Policies
  • Library Technology

User Information

  • Grad Students
  • Online Students
  • COVID-19 Updates
  • Staff Directory
  • News & Announcements
  • Library Newsletter

My Accounts

  • Interlibrary Loan
  • Staff Site Login

Sacred Heart University

FIND US ON  

REVIEW article

Eeg-based study of design creativity: a review on research design, experiments, and analysis.

Morteza Zangeneh Soroush

  • Concordia Institute for Information Systems Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montreal, QC, Canada

Brain dynamics associated with design creativity tasks are largely unexplored. Despite significant strides, there is a limited understanding of the brain-behavior during design creation tasks. The objective of this paper is to review the concepts of creativity and design creativity as well as their differences, and to explore the brain dynamics associated with design creativity tasks using electroencephalography (EEG) as a neuroimaging tool. The paper aims to provide essential insights for future researchers in the field of design creativity neurocognition. It seeks to examine fundamental studies, present key findings, and initiate a discussion on associated brain dynamics. The review employs thematic analysis and a forward and backward snowball search methodology with specific inclusion and exclusion criteria to select relevant studies. This search strategy ensured a comprehensive review focused on EEG-based creativity and design creativity experiments. Different components of those experiments such as participants, psychometrics, experiment design, and creativity tasks, are reviewed and then discussed. The review identifies that while some studies have converged on specific findings regarding EEG alpha band activity in creativity experiments, there remain inconsistencies in the literature. The paper underscores the need for further research to unravel the interplays between these cognitive processes. This comprehensive review serves as a valuable resource for readers seeking an understanding of current literature, principal discoveries, and areas where knowledge remains incomplete. It highlights both positive and foundational aspects, identifies gaps, and poses lingering questions to guide future research endeavors.

1 Introduction

1.1 creativity, design, and design creativity.

Investigating design creativity presents significant challenges due to its multifaceted nature, involving nonlinear cognitive processes and various subtasks such as divergent and convergent thinking, perception, memory retrieval, learning, inferring, understanding, and designing ( Gero, 1994 ; Gero, 2011 ; Nguyen and Zeng, 2012 ; Jung and Vartanian, 2018 ; Xie, 2023 ). Additionally, design creativity tasks are often ambiguous, intricate, and nonlinear, further complicating efforts to understand the underlying mechanisms and the brain dynamics associated with creative design processes.

Creativity, one of the higher-order cognitive processes, is defined as the ability to develop useful, novel, and surprising ideas ( Sternberg and Lubart, 1998 ; Boden, 2004 ; Runco and Jaeger, 2012 ; Simonton, 2012 ). Needless to say, creativity occurs in all parts of social and personal life and all situations and places, including everyday cleverness, the arts, sciences, business, social interaction, and education ( Mokyr, 1990 ; Cropley, 2015b ). However, this study particularly focuses on reviewing EEG-based studies of creativity and design creativity tasks.

Design, as a fundamental and widespread human activity, aiming at changing existing situations into desired ones ( Simon, 1996 ), is nonlinear and complex ( Zeng, 2001 ), and lies at the heart of creativity ( Guilford, 1959 ; Gero, 1996 ; Jung and Vartanian, 2018 ; Xie, 2023 ). According to the recursive logic of design ( Zeng and Cheng, 1991 ), a designer intensively interacts with the design problem, design environment (including stakeholders of design, design context, and design knowledge), and design solutions in the recursive environment-based design evolution process ( Zeng and Gu, 1999 ; Zeng, 2004 , 2015 ; Nagai and Gero, 2012 ). Zeng (2002) conceptualized the design process as an environment-changing process in which the product emerges from the environment, serves the environment, and changes the environment ( Zeng, 2015 ). Convergent and divergent thinking are two primary modes of thinking in the design process, which are involved in analytical, critical, and synthetic processes. Divergent thinking leads to possible solutions, some of which might be creative, to the design problem whereas convergent thinking will evaluate and filter the divergent solutions to choose appropriate and practical ones ( Pahl et al., 1988 ).

Creative design is inherently unpredictable; at times, it may seem implausible – yet it happens. Some argue that a good design process and methodology form the foundation of creative design, while others emphasize the significance of both design methodology and knowledge in fostering creativity. It is noteworthy that different designers may propose varied solutions to the same design problem, and even the same designer might generate diverse design solutions for the same problem over time ( Zeng, 2001 ; Boden, 2004 ). Creativity may spontaneously emerge even if one does not intend to conduct a creative design, whereas creative design just may not come out no matter how hard one tries. A design is considered routine if it operates within a design space of known and ordinary designs, innovative if it navigates within a defined state space of potential designs but yields different outcomes, and creative if it introduces new variables and structures into the space of potential designs ( Gero, 1990 ). Moreover, it is conceivable that a designer may lack creativity while the product itself demonstrates creative attributes, and conversely, a designer may exhibit creativity while the resulting product does not ( Yang et al., 2022 ).

Several models of design creativity have been proposed in the literature. In some earlier studies, design creativity was addressed as engineering creativity or creative problem-solving ( Cropley, 2015b ). Used in recent studies ( Jia et al., 2021 ; Jia and Zeng, 2021 ), the stages of design creativity include problem understanding, idea generation, idea evolution, and idea validation ( Guilford, 1959 ). Problem understanding and idea evaluation are assumed to be convergent cognitive tasks whereas idea generation and idea evolution are considered divergent tasks in design creativity. An earlier model of creative thinking proposed by Wallas (1926) is presented in four phases including preparation, incubation, illumination, and verification ( Cropley, 2015b ). The “Preparation” phase involves understanding a topic and defining the problem. During “Incubation,” one processes the information, usually subconsciously. In the “Illumination” phase, a solution appears, often unexpectedly. Lastly, “Verification” involves evaluating and implementing the derived solution. In addition to this model, a seven-phase model (an extended version of the 4-phase model) was later introduced containing preparation, activation, generation, illumination, verification, communication, and validation ( Cropley, 2015a , b ). It is crucial to emphasize that these phases are not strictly sequential or distinct in that interactions, setbacks, restarts, or premature conclusions might occur ( Haner, 2005 ). In contrast to those emperical models of creativity, the nonlinear recursive logic of design creativity was rigorously formalized in a mathematical design creativity theory ( Zeng, 2001 ; Zeng et al., 2004 ; Zeng and Yao, 2009 ; Nguyen and Zeng, 2012 ). For further details on the theories and models of creativity and design creativity, readers are directed to the referenced literature ( Gero, 1994 , 2011 ; Kaufman and Sternberg, 2010 ; Williams et al., 2011 ; Nagai and Gero, 2012 ; Cropley (2015b) ; Jung and Vartanian, 2018 ; Yang et al., 2022 ; Xie, 2023 ).

1.2 Design creativity neurocognition

First, we would like to provide the definitions of “design” and “creativity” which can be integrated into the definition of “design creativity.” According to the Cambridge Dictionary, the definition of design is: “to make or draw plans for something.” In addition, the definition of creativity is: “the ability to make something new or imaginative.” So, the definition of design creativity is: “the ability to design something new and valuable.” With these definitions, we focus on design creativity neurocognition in this section.

It is of great importance to study design creativity neurocognition as the brain plays a pivotal role in the cognitive processes underlying design creativity tasks. So, to better investigate design creativity we need to concentrate on brain mechanisms associated with the related cognitive processes. However, the complexity of these tasks has led to a significant gap in our understanding; consequently, our knowledge about the neural activities associated with design creativity remains largely limited and unexplored. To address this gap, a burgeoning field known as design creativity neurocognition has emerged. This field focuses on investigating the intricate and unstructured brain dynamics involved in design creativity using various neuroimaging tools such as electroencephalography (EEG).

In a nonlinear evolutionary model of design creativity, it is suggested that the brain handles problems and ideas in a way that leads to unpredictable and potentially creative solutions ( Zeng, 2001 ; Nguyen and Zeng, 2012 ). This involves cognitive processes like thinking of ideas, evolving and evaluating them, along with physical actions like drawing ( Zeng et al., 2004 ; Jia, 2021 ). This indicates that the brain, as a complex and nonlinear system with characteristics like emergence and self-organization, goes through several cognitive processes which enable the generation of creative ideas and solutions. Exploring brain activities during design creativity tasks helps us get a better insight into the design process and improves how designers perform. As a result, design neurocognition combines traditional design study methods with approaches from cognitive neuroscience, neurophysiology, and artificial intelligence, offering unique perspectives on understanding design thinking ( Balters et al., 2023 ). Although several studies have focused on design and creativity, brain dynamics associated with design creativity are largely untouched. It motivated us to conduct this literature review to explore the studies, gather the information and findings, and finally discuss them. Due to the advantages of electroencephalography (EEG) in design creativity experiments which will be explained in the following paragraphs, we decided to focus on EEG-based neurocognition in design creativity.

As mentioned before, design creativity tasks are cognitive activities which are complex, dynamic, nonlinear, self-organized, and emergent. The brain dynamics of design creativity are largely unknown. Brain behavior recognition during design-oriented tasks helps scientists investigate neural mechanisms, vividly understand design tasks, enhance whole design processes, and better help designers ( Nguyen and Zeng, 2014a , b , 2017 ; Liu et al., 2016 ; Nguyen et al., 2018 , 2019 ; Zhao et al., 2018 , 2020 ; Jia, 2021 ; Jia et al., 2021 ; Jia and Zeng, 2021 ). Exploring brain neural circuits in design-related processes has recently gained considerable attention in different fields of science. Several studies have been conducted to decode brain activity in different steps of design creativity ( Petsche et al., 1997 ; Nguyen and Zeng, 2010 , 2014a , b , 2017 ; Liu et al., 2016 ; Nguyen et al., 2018 ; Vieira et al., 2019 ). Such attempts will lead to investigating the mechanism and nature of the design creativity process and consequently enhance designers’ performance ( Balters et al., 2023 ). The main question of the studies performed in design creativity neurocognition is whether and how we can explore brain dynamics and infer designers’ cognitive states using neuro-cognitive and physiological data like EEG signals.

Neuroimaging is a vital tool in understanding the brain’s structure and function, offering insights into various neurological and psychological conditions. It employs a range of techniques to visualize the brain’s activity and structure. Neuroimaging methods mainly include magnetic resonance imaging (MRI), computed tomography (CT), electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), functional MRI (fMRI), and magnetoencephalography (MEG). Neuroimaging techniques have helped researchers explore brain dynamics in complex cognitive tasks, one of which is design creativity ( Nguyen and Zeng, 2014b ; Gao et al., 2017 ; Zhao et al., 2020 ). While several neuroimaging methods exist to study brain activity, electroencephalography (EEG) is one of the best methods which has been widely used in several studies in different applications. EEG, as an inexpensive and simple neuroimaging technique with a high temporal resolution and an acceptable spatial resolution, has been used to infer designers’ cognitive and emotional states. Zangeneh Soroush et al. (2023a , b) have recently introduced two comprehensive datasets encompassing EEG recordings in design and creativity experiments, stemmed from several EEG-based design and design creativity studies ( Nguyen and Zeng, 2014a ; Nguyen et al., 2018 , 2019 ; Jia, 2021 ; Jia et al., 2021 ; Jia and Zeng, 2021 ). In this paper, we review some of the most fundamental studies which have employed electroencephalography (EEG) to explore brain behavior in creativity and design creativity tasks.

1.3 EEG approach to studying creativity neurocognition

EEG stands out as a highly promising method for investigating brain dynamics across various fields, including cognitive, clinical, and computational neuroscience studies. In the context of design creativity, EEG offers a valuable means to explore brain activity, particularly considering the physical movements inherent in the design process. However, EEG analysis poses challenges due to its complexity, nonlinearity, and susceptibility to various artifacts. Therefore, gaining a comprehensive understanding of EEG and mastering its utilization and processing is crucial for conducting effective experiments in design creativity research. This review aims to examine studies that have utilized EEG in investigating design creativity tasks.

EEG is a technique for recording the electrical activity of the brain, primarily generated by neuronal firing within the human brain. This activity is almost always captured non-invasively from the scalp in most cognitive studies, though intracranial EEG (iEEG) is recorded inside the skull, for instance in surgical planning for epilepsy. EEG signals are the result of voltage differences measured across two points on the scalp, reflecting the summed synchronized synaptic activities of large populations of cortical neurons, predominantly from pyramidal cells ( Teplan, 2002 ; Sanei and Chambers, 2013 ).

While the spatial resolution of EEG is relatively poor, EEG offers excellent temporal resolution, capturing neuronal dynamics within milliseconds, a feature not matched by other neuroimaging modalities like functional Near-Infrared Spectroscopy (fNIRS), Positron Emission Tomography (PET), or functional Magnetic Resonance Imaging (fMRI).

In contrast, fMRI provides much higher spatial resolution, offering detailed images of brain activity by measuring blood flow changes associated with neuronal activity. However, fMRI’s temporal resolution is lower than EEG, as hemodynamic responses are slower than electrical activities. PET, like fMRI, offers high spatial resolution and involves tracking a radioactive tracer injected into the bloodstream to image metabolic processes in the brain. It is particularly useful for observing brain metabolism and neurochemical changes but is invasive and has limited temporal resolution. fNIRS, measuring hemodynamic responses in the brain via near-infrared light, stands between EEG and fMRI in terms of spatial resolution. It is non-invasive and offers better temporal resolution than fMRI but is less sensitive to deep brain structures compared to fMRI and PET. Each of these techniques, with their unique strengths and limitations, provides complementary insights into brain function ( Baillet et al., 2001 ; Sanei and Chambers, 2013 ; Choi and Kim, 2018 ; Peng, 2019 ).

This understanding of EEG, from its historical development by Hans Berger in 1924 to modern digital recording and analysis techniques, underscores its significance in studying brain function and diagnosing neurological conditions. Despite advancements in technology, the fundamental methods of EEG recording have remained largely unchanged, emphasizing its enduring relevance in neuroscience ( Teplan, 2002 ; Choi and Kim, 2018 ).

1.4 Objectives and structure of the paper

Balters et al. (2023) conducted a comprehensive systematic review including 82 papers on design neurocognition covering nine topics and a large variety of methodological approaches in design neurocognition. A systematic review ( Pidgeon et al., 2016 ), reported several EEG-based studies on functional neuroimaging of visual creativity. Although such a comprehensive review exists in the field of design neurocognition, just a few early reviews focused on creativity neurocognition ( Fink and Benedek, 2014 , 2021 ; Benedek and Fink, 2019 ).

The present review not only reports the studies but also critically discusses the previous findings and results. The rest of this paper is organized as follows: Section 2 introduces our review methodology; Section 3 presents the results from our review process, and Section 4 discusses the major implications of the existing design creativity neurocognition research in future studies. Section 5 concludes the paper.

2 Methods and materials

Figure 1 shows the main components of EEG-based design creativity studies: (1) experiment design, (2) participants, (3) psychometric tests, (4) experiments (creativity tasks), (5) EEG recording and analysis methods, and (6) final data analysis. The experiment design consists of experiment protocol which includes (design) creativity tasks, the criteria to choose participants, the conditions of the experiment, and recorded physiological responses (which is EEG here). Setting and adjusting these components play a crucial role in successful experiments and reliable results. In this paper, we review studies based on the components in Figure 1 .

www.frontiersin.org

Figure 1 . The main components of EEG-based design creativity studies.

The components described in Figure 1 are consistent with the stress-effort model proposed by Nguyan and Zeng ( Nguyen and Zeng, 2012 ; Zhao et al., 2018 ; Yang et al., 2021 ) which characterizes the relationship between mental stress and mental effort by a bell-shaped curve. This model defines mental stress as a ratio of the perceived task workload over the mental capability constituted by affect, skills, and knowledge. Knowledge is shaped by individual experience and understanding related to the given task workload. Skills encompass thinking styles, strategies, and reasoning ability. The degree of affect in response to a task workload can influence the effective utilization of the skills and knowledge. We thus used this model to form our research questions, determine the keywords, and conduct our analysis and discussions.

2.1 Research questions

We focused on the studies assessing brain function in design creativity experiments through EEG analysis. For a comprehensive review, we followed a thorough search strategy, called thematic analysis ( Braun and Clarke, 2012 ), which helped us to code and extract themes from the initial (seed) papers. We began without a fixed topic, immersing ourselves in the existing literature to shape our research questions, keywords, and search queries. Our research questions formed the search keywords and later the search inquiries.

Our main research questions (RQs) were:

RQ1: What are the effective experiment design and protocol to ensure high-quality EEG-based design creativity studies?
RQ2: How can we efficiently record, preprocess, and process EEG reflecting the cognitive workload associated with design creativity tasks?
RQ3: What are the existing methods to analyze the data extracted from EEG signals recorded during design creativity tasks?
RQ4: How can EEG signals provide significant insight into neural circuits and brain dynamics associated with design creativity tasks?
RQ5: What are the significant neuroscientific findings, shortcomings, and inconsistencies in the literature?

With the initial information extracted from the seed papers and the previous studies by the authors in this field ( Nguyen and Zeng, 2012 , 2014a , b ; Jia et al., 2021 ; Jia and Zeng, 2021 ; Yang et al., 2022 ; Zangeneh Soroush et al., 2024 ), we built a conceptual model represented by Figure 1 and then formed these research questions. With this understanding and the RQs, we set our search strategy.

2.2 Search strategy and inclusion-exclusion criteria

Our search started with broad terms like “design,” “creativity,” and “EEG.” These terms encapsulate the overarching cognitive activities and physiological measurement. As we identified relevant papers, we refined our search keywords for a more targeted search. We utilized the Boolean operators such as “OR” and “AND” to finetune our search inquiries. The search inquiries were enhanced by the authors through the knowledge they obtained through selected papers. The first phase started with thematic analysis and continued with choosing papers, obtaining knowledge, discussing the keywords, and updating the search inquiries, recursively until reaching an appropriate search inquiry which resulted in the desired search results. We applied the thematic analysis only in the first iteration to make sure that we had the right and comprehensive understanding of EEG-based design creativity, the appropriate set of keywords, and search inquiries. Finally, we came up with a comprehensive search inquiry as follows:

(“EEG” OR “Electroenceph*” OR “brain” OR “neur*” OR “neural correlates” OR “cognit*”) AND (“design creativity” OR “ideation” OR “creative” OR “divergent thinking” OR “convergent thinking” OR “design neurocognition” OR “creativity” OR “creative design” OR “design thinking” OR “design cognition” OR “creation”)

The search inquiry is a combination of terminologies related to design and creativity, as well as terminologies about EEG, neural activity, and the brain. In a general and quick evaluation, we found out that our proposed search inquiry resulted in relevant studies in the field. This evaluation was a quick way to check how effectively our search keywords work. Then, we went through well-known databases such as PubMed, Scopus, and Web of Science to collect a comprehensive set of original papers, theses, and reviews. These electronic databases were searched to reduce the risk of bias, to get more accurate findings, and to provide coverage of the literature. We continued our search in the aforementioned databases until no more significant papers emerged from those specific databases. It is worth mentioning that we do not consider any specific time interval in our search procedure. We used the fields “title,” “abstract,” and “keywords” in our search process. Then, we selected the papers based on the following inclusion criteria:

1. The paper should answer one or more research questions (RQ1-RQ5).

2. The paper must be a peer-reviewed journal paper authored in English.

3. The paper should focus on EEG analysis related to creativity or design creativity for adult participants.

4. The paper should be related to creativity or design creativity in terms of the concepts, experiments, protocols, and probable models employed in the studies.

5. The paper should use established creativity tasks, including the Alternative Uses Task (AUT), the Torrance Tests of Creative Thinking (TTCT), or a specific design task. (These tasks will be detailed further on.)

6. The paper should include a quantitative analysis of EEG signals in the creativity or design creativity domain.

7. In addition to the above-mentioned criteria, the authors checked the papers to make sure that the included publications have the characteristics of high-quality papers.

These criteria were used to select our initial papers from the large set of papers we collected from Scopus, Web of Science, and PubMed. It should be mentioned that conflicts were resolved through discussion and duplicate papers were removed.

After our initial selection, we used Google Scholar to perform a forward and backward snowball search approach. We chose the snowball search method over the systematic review approach as the forward and backward snowball search methodologies offer efficient alternatives to a systematic review. Unlike systematic reviews, the snowball search method is particularly valuable when dealing with emerging fields or when the scope of inquiry is evolving, allowing researchers to quickly uncover pertinent insights and form connections between seminal and contemporary works. During each iteration of the snowball search, we applied the aforementioned criteria to include or exclude papers accordingly. We continued our snowball search procedure until it converged to the final set of papers. After repeating this over six iterations, we found no new and significant papers, suggesting we had reached a convergent set of papers.

By October 1 st (2023), our search was complete. We then organized and studied the final included publications.

3.1 Search results

Figure 2 illustrates the general flow of our search procedure, adapted from PRISMA guidelines ( Liberati et al., 2009 ). With the search keywords, we identified 1878 studies during the thematic analysis phase. We considered these studies to select the seed papers for the further snowball search process. After performing the snowball search and considering inclusion and exclusion criteria, we finally selected 154 studies including 82 studies related to creativity (comprising 60 original papers, 12 theses, and 10 review papers) and 72 studies related to design creativity (comprising 63 original papers, 5 theses, and 4 review papers). In our search, we also found 6 related textbooks and 157 studies using other modalities (such as fMRI, fNIRS, etc.) which were excluded. We used these textbooks, theses, and their resources to gain more knowledge in the initial steps of our review. Some studies using fMRI and fNIRS were used to evaluate the results in the discussion. In the snowball search process, a large number of studies have consistently appeared across all iterations implying their high relevance and influence in the field. These papers, which have been repeatedly selected throughout the search process, demonstrate their significant contributions to the understanding of design creativity and EEG studies. The snowball process effectively identifies such pivotal studies by highlighting their recurrent presence and citation in the literature, underscoring their importance in shaping the research landscape.

www.frontiersin.org

Figure 2 . Search procedure and results (adopted from PRISMA) using the thematic analysis in the first iteration and snowball search in the following iterations.

3.2 Design creativity neurocognition: history and trend

As discussed in Section 1, creativity and design creativity studies are different yet closely related in that design creativity involves a more complex design process. In this subsection, we will look at how the design neurocognition creativity study followed the creativity neurocognition study (though not necessarily in a causal manner).

3.2.1 History of creativity neurocognition

Three early studies in the field of creativity neurocognition are Martindale and Mines (1975) , Martindale and Hasenfus (1978) , and Martindale et al. (1984) . In the first study ( Martindale and Mines, 1975 ), it is stated that creative individuals may exhibit certain traits linked to lower cortical activation. This research has shown distinct neural activities when participants engage in two creativity tasks: the Alternate Uses Tasks (AUT) and the Remote Associate Task (RAT). The AUT, which gauges ideational fluency and involves unfocused attention, is related to higher alpha power in the brain. Conversely, the RAT, which centers on producing specific answers, shows varied alpha levels. Previous psychological research aligns with these findings, emphasizing the different nature of these tasks. Creativity, as determined by both tests, is associated with high alpha percentages during the AUT, hinting at an association between creativity and reduced cortical activation during creative tasks. However, highly creative individuals also show a mild deficit in cortical self-control, evident in their increased alpha levels, even when trying to suppress them. This behavior mirrors findings from earlier and later studies and implies that these individuals might have a predisposition to disinhibition. The varying alpha levels during cognitive tasks likely stem from their reaction to tasks rather than intentional focus shifts ( Martindale and Mines, 1975 ).

In the second study ( Martindale and Hasenfus, 1978 ), the authors explored the relationship between creativity and EEG alpha band presence during different stages of the creative process. There were two experiments in this study. Experiment 1 found that highly creative individuals had lower alpha wave presence during the elaboration stage of the creative process, while Experiment 2 found that effort to be original during the inspiration stage was associated with higher alpha wave presence. Overall, the findings suggest that creativity is associated with changes in EEG alpha wave presence during different stages of the creative process. However, the relationship is complex and may depend on factors such as effort to be original and the specific stage of the creative process.

Finally, a series of three studies indicated a link between creativity and hemispheric asymmetry during creative tasks ( Martindale et al., 1984 ). Creative individuals typically exhibited heightened right-hemisphere activity compared to the left during creative output. However, no distinct correlation was found between creativity and varying levels of hemispheric asymmetry during the inspiration versus elaboration phases. The findings suggest that this relationship is consistent across different stages of creative production. These findings were the foundation of design creativity studies which were more explored later and confirmed by other studies ( Petsche et al., 1997 ). Later studies have used these findings to validate their results. In addition to these early studies, there exist several reviews such as Fink and Benedek (2014) , Pidgeon et al. (2016) , and Rominger et al. (2022a) which provide a comprehensive literature review of previous studies and their main findings including early studies as well as recent creativity research.

3.2.2 EEG-based creativity studies

In the preceding sections, we aimed to lay a foundational understanding of neurocognition in creativity, equipping readers with essential knowledge for the subsequent content. In this subsection, we will briefly introduce the main and most important points regarding creativity experiments. More detailed information can be found in Simonton (2000) , Srinivasan (2007) , Arden et al. (2010) , Fink and Benedek (2014) , Pidgeon et al. (2016) , Lazar (2018) , and Hu and Shepley (2022) .

This section presents key details from the selected studies in a structured format to facilitate easy understanding and comparison for readers. As outlined earlier, crucial elements in creativity research include the participants, psychometric tests used, creativity tasks, EEG recording and analysis techniques, and the methods of final data analysis. We have organized these factors, along with the principal findings of each study, into Table 1 . This approach allows readers to quickly grasp the essential information and compare various aspects of different studies. The table format not only aids in presenting data clearly and concisely but also helps in highlighting similarities and differences across studies, providing a comprehensive overview of the field. Following the table, we have included a discussion section. This discussion synthesizes the information from the table, offering insights and interpretations of the trends, implications, and significance of these studies in the broader context of creativity neurocognition. This structured presentation of studies, followed by a detailed discussion, is designed to enhance the reader’s understanding, and provide a solid foundation for future research in this dynamic and evolving field.

www.frontiersin.org

Table 1 . A summary of EEG-based creativity neurocognition studies.

In our research, we initially conducted a thematic analysis and utilized a forward and backward snowball search method to select relevant studies. Out of these, five studies employed machine learning techniques, while the remaining ones concentrated on statistically analyzing EEG features. It is noteworthy that all the chosen studies followed a similar methodology, involving the recruitment of participants, administering probable psychometric tests, conducting creativity tasks, recording EEG data, and concluding with final data analysis.

While most studies follow similar structure for their experiments, some other studies focus on other aspects of creativity such as artistic creativity and poetry, targeting different evaluation methods, and through different approaches. In Shemyakina and Dan’ko (2004) and Danko et al. (2009) , the authors targeted creativity to produce proverbs or definitions of emotions of notions. In other studies ( Leikin, 2013 ; Hetzroni et al., 2019 ), the experiments are focused on creativity and problem-solving in autism and bilingualism. Moreover, some studies such as Volf and Razumnikova (1999) and Razumnikova (2004) focus more on the gender differences in brain organization during creativity tasks. In another study ( Petsche, 1996 ), approaches to verbal, visual, and musical creativity were explored through EEG coherence analysis. Similarly, the study ( Bhattacharya and Petsche, 2005 ) analyzed brain dynamics in mentally composing drawings through differences in cortical integration patterns between artists and non-artists. We summarized the findings of EEG-based creativity studies in Table 1 .

3.2.3 Neurocognitive studies of design and design creativity

Design is closely associated with creativity. On the one hand, by definition, creativity is a measure of the process of creating, for which design, either intentional or unconscious, is an indispensable constituent. On the other hand, it is important to note that not all designs are inherently creative; many designs follow established patterns and resemble existing ones, differing only in their specific context. Early research on design creativity aimed to differentiate between design and design creativity tasks by examining when and how designers exhibited creativity in their work. In recent years, much of the focus in design creativity research has shifted towards cognitive and neurocognitive investigations, as well as the development of computational models to simulate creative processes ( Borgianni and Maccioni, 2020 ; Lloyd-Cox et al., 2022 ). Neurocognitive studies employ neuroimaging methods (such as EEG) while computational models often leverage artificial intelligence or cognitive modeling techniques ( Zeng and Yao, 2009 ; Gero, 2020 ; Gero and Milovanovic, 2020 ). In this section, we review significant EEG-based studies in design creativity to focus more on design creation and highlight the differences. While most studies have processed EEG to provide more detailed insight into brain dynamics, some studies such as Goel (2014) outlined a preliminary framework encompassing cognitive and neuropsychological systems essential for explaining creativity in designing artifacts.

Several studies have recorded and analyzed EEG in design and design creativity tasks. Most neuro-cognitive studies have directly or indirectly employed frequency-based analysis which is based on the analysis of EEG in specific frequency bands including delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (>30 Hz). One of the main analyses is called task-related potential (TRP) which has provided a foundation for other analyses. It computes the relative power of the EEG signal associated with a design task in a specific frequency band with respect to the power of EEG in the rest mode. This analysis is simple and effective and reveals the physiological processes underlying EEG dynamics ( Rominger et al., 2018 ; Jia and Zeng, 2021 ; Gubler et al., 2022 ; Rominger et al., 2022b ).

Frequency-based analyses have been widely employed. For example, the study ( Borgianni and Maccioni, 2020 ) applied TRP analysis to compare the neurophysiological activations of mechanical engineers and industrial designers while conducting design tasks including problem-solving, basic design, and open design. These studies have agreed that higher alpha band activity is sensitive to specific task-related requirements, while the lower alpha corresponds to attention processes such as vigilance and alertness ( Klimesch et al., 1998 ; Klimesch, 1999 ; Chrysikou and Gero, 2020 ). Higher alpha activity in the prefrontal region reflects complex cognitive processes, higher internal attention (such as in imagination), and task-irrelevant inhibition ( Fink et al., 2009a , b ; Fink and Benedek, 2014 ). On the other hand, higher alpha activity in the occipital and temporal lobes corresponds to visualization processes ( Vieira et al., 2022a ). In design research, to compare EEG characteristics in design activities (such as idea generation or evaluation) ( Liu et al., 2016 ), frequency-based analysis has been widely employed ( Liu et al., 2018 ). Higher alpha is associated with open-ended tasks, visual association in expert designers, and divergent thinking ( Nguyen and Zeng, 2014b ; Nguyen et al., 2019 ). Higher beta and theta play a pivotal role in convergent thinking, and constraint tasks ( Nguyen and Zeng, 2010 ; Liu et al., 2016 ; Liang and Liu, 2019 ).

The research in design and design creativity is not limited to frequency-based analyses. Nguyen et al. (2019) introduced Microstate analysis to EEG-based design studies. Using the microstate analysis, Jia and Zeng investigated EEG characteristics in design creativity experiment ( Jia and Zeng, 2021 ), where EEG signals were recorded while participants conducted design creativity experiments which were modified TTCT tasks ( Nguyen and Zeng, 2014b ).

Following the same approach, Jia et al. (2021) analyzed EEG microstates to decode brain dynamics in design cognitive states including problem understanding, idea generation, rating idea generation, idea evaluation, and rating idea evaluation, where six design problems including designing a birthday cake, a toothbrush, a recycle bin, a drinking fountain, a workplace, and a wheelchair were used for the EEG based design experimental studies ( Nguyen and Zeng, 2017 ). The data of these two loosely controlled EEG-based design experiments are summarized and available for the research community ( Zangeneh Soroush et al., 2024 ).

We summarized the findings of EEG-based design and design creativity studies in Table 2 .

www.frontiersin.org

Table 2 . A summary of EEG-based design creativity neurocognition studies.

3.2.4 Trend analysis

The selected studies span a broad range of years, stretching from 1975 ( Martindale and Mines, 1975 ) to the present day, reflecting advancements in neuro-imaging techniques and machine learning methods that have significantly aided researchers in their investigations. From the earliest studies to more recent ones, the primary focus has centered on EEG sub-bands, brain asymmetry, coherence analysis, and brain topography. Recently, machine learning methods have been employed to classify EEG samples into designers’ cognitive states. These studies can be roughly classified into the following distinct categories based on their proposed experiments and EEG analysis methods ( Pidgeon et al., 2016 ; Jia, 2021 ): (1) visual creativity versus baseline rest/fixation, (2) visual creativity versus non-rest control task(s), (3) individuals of high versus low creativity, (4) generation of original versus standard visual images, (5) creativity in virtual reality vs. real environment, (6) loosely controlled vs. strictly controlled creativity experiments.

The included studies exhibited considerable variation in the tasks utilized and the primary contrasts examined. Some studies employed frequency-based or EEG power analysis to compare brain activity during visual creativity tasks with tasks involving verbal creativity or both verbal and visual tasks. These tasks often entail memory tasks or tasks focused on convergent thinking. Several studies, however, adopted a simpler approach by comparing electrophysiological activity during visual creativity tasks against a baseline fixation or rest condition. Some studies compared neural activities between individuals characterized by high and low levels of creativity, while others compared the generation of original creative images with that of standard creative images. Several studies analyze brain behavior concerning creativity factors such as fluency, originality, and others. These studies typically employ statistical analysis techniques to illustrate and elucidate differences between various creativity factors and their corresponding brain behaviors. This variability underscores the diverse approaches taken by researchers to examine the neural correlates of design creativity ( Pidgeon et al., 2016 ). However, few studies significantly and deeply delved into areas such as gender differences in creativity, creativity among individuals with mental or physical disorders, or creativity in diverse job positions or skill sets. This suggests that there is significant untapped potential within the EEG-based design creativity research area.

In recent years, advancements in fMRI imaging and its applications have led several studies to replace EEG with fMRI to investigate brain behavior. fMRI extracts metabolism, resulting in relatively high spatial resolution compared to EEG. However, it is important to note that fMRI has lower temporal resolution compared to EEG. Despite this difference, the shift towards fMRI highlights the ongoing evolution and exploration of neuroimaging techniques in understanding the neural correlates of design creativity. fMRI studies provide a deep understanding of neural circuits associated with creativity and can be used to evaluate EEG-based studies ( Abraham et al., 2018 ; Japardi et al., 2018 ; Zhuang et al., 2021 ).

The emergence of virtual reality (VR) has had a significant impact on design creativity studies, offering a wide range of experimentation possibilities. VR enables researchers to create diverse scenarios and creativity tasks, providing a dynamic and immersive environment for participants ( Agnoli et al., 2021 ; Chang et al., 2022 ). Through VR technology, various design creativity experiments can be conducted, allowing for novel approaches and innovative methodologies to explore the creative process. This advancement opens up new avenues for researchers to investigate the complexities of design creativity more interactively and engagingly.

Regardless of the significant progress over the past few decades, design and design creativity neurocognitive research is still in its early stages, due to the challenges identified ( Zhao et al., 2020 ; Jia et al., 2021 ), which is summarized below:

1. Design tasks are open-ended, meaning there is no single correct outcome and countless acceptable solutions are possible. There are no predetermined or optimal design solutions; multiple feasible solutions may exist for an open-ended design task.

2. Design tasks are ill-defined as finding a solution might change or redefine the original task, leading to new tasks emerging.

3. Various emergent design tasks trigger design knowledge and solutions, which in turn can change or redefine tasks further.

4. The process of completing a design task depends on emerging tasks and the perceived priorities for completion.

5. The criteria to evaluate a design solution are set by the solution itself.

While a lot of lessons learned from creativity neurocognitive research can be borrowed to study design and design creativity neurocognition, new paradigms should be proposed, tested, and validated to advance this new discipline. This advancement will in turn move forward creativity neurocognition research.

3.3 Experiment protocol

Concerning the model described in Figure 1 , we arranged the following sections to cover all the main components of EEG-based design creativity studies. To bring a general picture of the EEG-based design creativity studies, we briefly explain the procedure of such experiments. Since most design creativity neurocognition research inherited more or less procedures in general creativity research, we will focus on AUT and TTCT tasks. The introduction of a loosely controlled paradigm, tEEG, can be found in Zhao et al. (2020) , Jia et al. (2021) , and Jia and Zeng (2021) . Taking a look at Tables 1 , 2 , it can be inferred that almost all included studies record EEG signals while selected participants are performing creativity tasks. The first step is determining the sample size, recruiting participants, and psychometrics according to which participants get selected. In some of these studies, participants take psychometric tests before performing the creativity tasks for screening or categorization. In this review, the tasks used to gauge creativity are the Alternative Uses Test (AUT) and the Torrance Test of Creative Thinking (TTCT). During these tasks, EEG is recorded and then preprocessed to remove any probable artifacts. These artifact-free EEGs are then processed to extract specific features, which are subsequently subjected to either statistical analysis or machine learning methods. Statistical analysis typically compares brain dynamics across different creativity tasks like idea generation, idea evolution, and idea evaluation. Machine learning, on the other hand, categorizes EEG signals based on associated creativity tasks. The final stage involves data analysis, which aims to deduce how brain dynamics correlate with the creativity tasks given to participants. This data analysis also compares EEG results with psychometric test findings to discern any significant differences in EEG dynamics and neural activity between groups.

3.3.1 Participants

The first factor of the studies is their participants. In most studies, participants are right-handed, non-medicated, and have normal or corrected to normal vision. In some cases, the Edinburgh Handedness Inventory ( Oldfield, 1971 ) (with 11 elements) or hand dominance test (HDT) ( Steingrüber et al., 1971 ) were employed to determine participants’ handedness ( Rominger et al., 2020 ; Gubler et al., 2023 ; Mazza et al., 2023 ). While in several creativity studies, right-handedness has been considered; relatively, in design creativity studies it has been less mentioned.

In most studies, participants are undergraduate or graduate students with different educational backgrounds and an age range of 18 to 30 years. In the included papers, participants did not report any history of psychiatric or neurological disorders, or treatment. It should be noted that some studies such as Ayoobi et al. (2022) and Gubler et al. (2022) analyzed creativity in health conditions like multiple sclerosis or participants with chronic pain, respectively. These studies usually conduct statistical analysis to investigate the results of creativity tasks such as AUT or Remote Association Task (RAT) and then associate the results with the health condition. In some studies, it is reported that participants were asked not to smoke cigarettes for 1 h, not to have coffee for 2 h, alcohol for 12 h, or other stimulating beverages for several hours before experiments. As mentioned in some design creativity studies, similar rules apply to design creativity experiments (participants are not allowed to have stimulating beverages).

In most studies, the sample size of participants was as large as 15 up to 45 participants except for a few studies ( Jauk et al., 2012 ; Perchtold-Stefan et al., 2020 ; Rominger et al., 2022a , b ) which had larger numbers such as 100, 55, 93, and 74 participants, respectively. Some studies such as Agnoli et al. (2020) and Rominger et al. (2020) calculated their required sample size through G*power software ( Faul et al., 2007 ) concerning their desirable chance (or power) of detecting a specific interaction effect involving the response, hemisphere, and position ( Agnoli et al., 2020 ). Considering design creativity studies, the same trend can be seen as the minimum and maximum numbers of participants are 8 and 84, respectively. Similarly, in a few studies, sample sizes were estimated through statistical methods such as G*power ( Giannopulu et al., 2022 ).

In most studies, a considerable number of participants were excluded due to several reasons such as not being fluent in the language used in the experiment, left-handedness, poor quality of recorded signals, extensive EEG artifacts, misunderstanding the procedure of the experiment correctly, technical errors, losing the data during the experiment, no variance in the ratings, and insufficient behavioral data. This shows that recording a high-quality dataset is quite challenging as several factors determine whether the quality is acceptable. Two datasets (in design and creativity) with public access have recently been published in Mendeley Data ( Zangeneh Soroush et al., 2023a , b ). Except for these two datasets, to the best of our knowledge, there is no publicly available dataset of EEG signals recorded in design and design creativity experiments.

Regarding the gender analysis, among the included papers, there were a few studies which directly focused on the association between gender, design creativity, and brain dynamics ( Vieira et al., 2021 , 2022a ). In addition, most of the included papers did not choose the participants’ gender to include or exclude them. In some cases, participants’ genders were not reported.

3.3.2 Psychometric tests

Before the EEG recording sessions, participants are often screened using psychometric tests, which are usually employed to categorize participants based on different aspects of intellectual abilities, ideational fluency, and cognitive development. These tests provide scores on various cognitive abilities. Additionally, personality tests are used to create personas for participants. Self-report questionnaires measure traits such as anxiety, mood, and depression. Some of the psychometric tests include the Intelligenz-Struktur-Test 2000-R (I-S-T 2000 R), which assesses general mental ability and specific intellectual abilities like visuospatial, numerical, and verbal abilities. The big five test is used for measuring personality traits like conscientiousness, extraversion, neuroticism, openness to experience, and agreeableness. Other tests such as Spielberger’s state–trait anxiety inventory (STAI) are used for mood and anxiety, while the Eysenck Personality Questionnaire (EPQ-R) investigates possible personality correlates of task performance ( Fink and Neubauer, 2006 , 2008 ; Fink et al., 2009a ; Jauk et al., 2012 ; Wang et al., 2019 ). To the best of our knowledge, the included design creativity studies have not directly utilized psychometrics ( Table 2 ) to explore the association between participants’ cognitive characteristics and brain behavior. There exist a few studies which have indirectly used cognitive characteristics. For instance, Eymann et al. (2022) assessed the shared mechanisms of creativity and intelligence in creative reasoning and their correlations with EEG characteristics.

3.3.3 Creativity and design creativity tasks

In this section, we introduce some experimental creativity tasks such as the Alternate Uses Task (AUT), and the Torrance Test of Creative Thinking (TTCT). Here, we would like to shed light on these tasks and their correlation with design creativity. One of the main characteristics of design creativity is divergent thinking as its first phase which is addressed by these two creativity tasks. In addition, AUT and TTCT are adopted and modified by several studies such as Hartog et al. (2020) , Hartog (2021) , Jia et al. (2021) , Jia and Zeng (2021) , and Li et al. (2021) for design creativity neurocognition studies. The figural version of TTCT is aligned with the goals of design creativity tasks where designers (specifically in engineering domains) create or draw their ideas, generate solutions, and evaluate and evolve generated solutions ( Srinivasan, 2007 ; Mayseless et al., 2014 ; Jia et al., 2021 ).

Furthermore, design creativity studies have introduced different types of design tasks from sequence of simple design problems to constrained and open design tasks ( Nguyen et al., 2018 ; Vieira et al., 2022a ). This variety of tasks opens new perspectives to the design creativity neurocognition studies. For example, the six design problems have been employed in some studies ( Nguyen and Zeng, 2014b ); ill-defined design tasks are used to explore brain dynamics differences between novice and expert designers ( Vieira et al., 2020d ).

The Alternate Uses Task (AUT), established by Guilford (1967) , is a prominent tool in psychological evaluations for assessing divergent thinking, an essential element of creativity. In AUT ( Guilford, 1967 ), participants are prompted to think of new and unconventional uses for everyday objects. Each object is usually shown twice – initially in the normal (common) condition and subsequently in the uncommon condition. In the common condition, participants are asked to consider regular, everyday uses for the objects. Conversely, in uncommon conditions, they are encouraged to come up with unique, inventive uses for the objects ( Stevens and Zabelina, 2020 ). The test includes several items for consideration, e.g., brick, foil, hanger, helmet, key, magnet, pencil, and pipe. In the uncommon condition, participants are asked to come up with as many uses as they can for everyday objects, such as shoes. It requires them to think beyond the typical uses (e.g., foot protection) and envision novel uses (e.g., a plant pot or ashtray). The responses in this classic task do not distinguish between the two key elements of creativity: originality (being novel and unique) and appropriateness (being relevant and meaningful) ( Runco and Mraz, 1992 ; Wang et al., 2017 ). For instance, when using a newspaper in the AUT, responses can vary from common uses like reading or wrapping to more inventive ones like creating a temporary umbrella. The AUT requires participants to generate multiple uses for everyday objects thereby measuring creativity through four main criteria: fluency (quantity of ideas), originality (uniqueness of ideas), flexibility (diversity of idea categories), and elaboration (detail in ideas) ( Cropley, 2000 ; Runco and Acar, 2012 ). In addition to the original indices of AUT, there are some creativity tests which include other indices such as fluency-valid and usefulness. Usefulness refers to how functional the ideas are ( Cropley, 2000 ; Runco and Acar, 2012 ) whereas fluency-valid, which only counts unique and non-repeated ideas, is defined as a valid number of ideas ( Prent and Smit, 2020 ). The AUT’s straightforward design and versatility make it a favored method for gauging creative capacity in diverse groups and settings, reflecting its universal applicability in creativity assessment ( Runco and Acar, 2012 ).

Developed by E. Paul Torrance in the late 1960s, the Torrance Test of Creative Thinking (TTCT) ( Torrance, 1966 ) is a foundational instrument for evaluating creative thinking. TTCT is recognized as a highly popular and extensively utilized tool for assessing creativity. Unlike the AUT, the TTCT is more structured and exists in two versions: verbal and figural. The verbal part of the TTCT, known as TTCT-Verbal, includes several subtests ( Almeida et al., 2008 ): (a) Asking Questions and Making Guesses (subtests 1, 2, and 3), where participants are required to pose questions and hypothesize about potential causes and effects; (b) Improvement of a Product (subtest 4), which involves suggesting modifications to the product; (c) Unusual Uses (subtest 5), where participants think of creative and atypical uses; and (d) Supposing (subtest 6), where participants imagine the outcomes of an unlikely event, as per Torrance. The figural component, TTCT-Figural, contains three tasks ( Almeida et al., 2008 ): (a) creating a drawing; (b) completing an unfinished drawing; and (c) developing a new drawing starting from parallel lines. An example of a figural TTCT task might involve uniquely finishing a partially drawn image, with evaluations based on the aforementioned criteria ( Rominger et al., 2018 ).

The TTCT includes a range of real-world reflective activities that encourage diverse thinking styles, essential for daily life and professional tasks. The TTCT assesses abilities in Questioning, Hypothesizing Causes and Effects, and Product Enhancement, each offering insights into an individual’s universal creative potential and originality ( Boden, 2004 ; Runco and Jaeger, 2012 ; Sternberg, 2020 ). It acts like a comprehensive test battery, evaluating multiple facets of creativity’s complex nature ( Guzik et al., 2023 ).

There are also other creativity tests such as Remote Associates Test (RAT), Runco Creativity Assessment Battery (rCAB), and Consensual Assessment Technique (CAT). TTCT is valued for its extensive historical database of human responses, which serves as a benchmark for comparison, owing to the consistent demographic profile of participants over many years and the systematic gathering of responses for evaluation ( Kaufman et al., 2008 ). The Alternate Uses Task (AUT) and the Remote Associates Test (RAT) are appreciated for their straightforward administration, scoring, and analysis. The Creative Achievement Test (CAT) is notable for its adaptability to specific fields, made possible by employing a panel of experts in relevant domains to assess creative works. Consequently, the CAT is particularly suited for evaluating creative outputs in historical contexts or significant “Big-C” creativity ( Kaufman et al., 2010 ). In contrast, the AUT and TTCT are more relevant for examining creativity in everyday, psychological, and professional contexts. As such, AUT and TTCT tests will establish a solid baseline for more complex design creativity studies employing more realistic design problems.

3.4 EEG recording and analysis: methods and algorithms

Electroencephalogram (EEG) signal analysis is a crucial component in the study of creativity whereby brain behavior associated with creativity tasks can be explored. Due to its advantages, EEG has emerged as one of the most suitable neuroimaging techniques for investigating brain activity during creativity tasks. Its affordability and suitability for studies involving physical movement, ease of recording and usage, and notably high temporal resolution make EEG a preferred choice in creativity research.

The dynamics during creative tasks are complex, nonlinear, and self-organized ( Nguyen and Zeng, 2012 ). It can thus be assumed that the brain could exhibits the similar characteristics, which shall be reflected in EEG signals. Capturing these complex and nonlinear patterns of brain behavior can be challenging for other neuroimaging methods ( Soroush et al., 2018 ).

3.4.1 Preprocessing: artifact removal

In design creativity studies utilizing EEG, the susceptibility of EEG signals to noise and artifacts is a significant concern due to the accompanying physical movements inherent in these tasks. Consequently, EEG preprocessing becomes indispensable in ensuring data quality and reliability. Unfortunately, not all the included studies in this review have clearly explained their pre-processing and artifact removal approaches. There also exist some well-known preprocessing pipelines such as HAPPE ( Gabard-Durnam et al., 2018 ) which (in contrast to their high efficiency) have been rarely used in design creativity neurocognition ( Jia et al., 2021 ; Jia and Zeng, 2021 ). The included papers in our analysis have introduced various preprocessing methods, including wavelet analysis, frequency-based filtering, and independent component analysis (ICA) ( Beaty et al., 2017 ; Fink et al., 2018 ; Lou et al., 2020 ). The primary objective of preprocessing remains consistent: to obtain high-quality EEG data devoid of noise or artifacts while minimizing information loss. Achieving this goal is crucial for the accurate interpretation and analysis of EEG signals in design creativity research.

3.4.2 Preprocessing: segmentation

Design creativity studies often encompass a multitude of cognitive tasks occurring simultaneously or sequentially, rendering them ill-defined and unstructured. This complexity leads to the generation of unstructured EEG data, posing a challenge for subsequent analysis ( Zhao et al., 2020 ). Therefore, segmentation methods play a crucial role in classifying recorded EEG signals into distinct cognitive tasks, such as idea generation, idea evolution, and idea evaluation.

Several segmentation methods have been adopted, including the ones relying on Task-Related Potential (TRP) analysis and microstate analysis, followed by clustering techniques like K-means clustering ( Nguyen and Zeng, 2014a ; Nguyen et al., 2019 ; Zhao et al., 2020 ; Jia et al., 2021 ; Jia and Zeng, 2021 ; Rominger et al., 2022b ). These methods aid in organizing EEG data into meaningful segments corresponding to different phases of the design creativity process, facilitating more targeted and insightful analysis. In addition, they provide possibilities to look into a more comprehensive list of design-related cognitions implied in but not intended by conventional AUT and TTCT experiments.

While there are some uniform segmentation methods (such as the ones based on TRP) employing frequency-based methods. Nguyen et al. (2019) introduced a fully automatic dynamic method based on microstate analysis. Since then, microstate analysis has been used in several studies to categorize the EEG dynamics in design creativity tasks ( Jia et al., 2021 ; Jia and Zeng, 2021 ). Microstate analysis provides a novel method for EEG-based design creativity studies with the capabilities of high temporal resolution and topography results ( Yuan et al., 2012 ; Custo et al., 2017 ; Jia et al., 2021 ; Jia and Zeng, 2021 ).

3.4.3 Feature extraction

The EEG data, after undergoing preprocessing, is directed to feature extraction, where relevant attributes are extracted to delve deeper into EEG dynamics and brain activity. These extracted features serve as the basis for conducting statistical analyses or employing machine learning algorithms.

In our review of the literature, we found that EEG frequency, time, and time-frequency analyses are the most commonly employed methods among the papers we considered. Specifically, the EEG alpha, beta, and gamma bands are often highlighted as critical indicators for studying brain dynamics in creativity and design creativity. Significant variations in the EEG bands have been observed during different stages of design creation tasks, including idea generation, idea evaluation, and idea elaboration ( Nguyen and Zeng, 2010 ; Liu et al., 2016 ; Rominger et al., 2019 ; Giannopulu et al., 2022 ; Lukačević et al., 2023 ; Mazza et al., 2023 ). For instance, the very first creativity studies used EEG alpha asymmetry to explore the relationship between creativity and left-hemisphere and right-hemisphere brain activity ( Martindale and Mines, 1975 ; Martindale and Hasenfus, 1978 ; Martindale et al., 1984 ). Other studies divided the EEG alpha band into lower (8–10 Hz) and upper alpha (10–13 Hz) and concluded that low alpha is more significant compared to the high EEG alpha band. Although the alpha band has been extensively explored by previous studies, several studies have also analyzed other EEG sub-bands such as beta, gamma, and delta and later concluded that these sub-bands are also significantly associated with creativity mechanisms, and can explain the differences between genders in different creativity experiments ( Razumnikova, 2004 ; Volf et al., 2010 ; Nair et al., 2020 ; Vieira et al., 2022a ).

Several studies have utilized Task-related power changes (TRP) to compare the EEG dynamics in different creativity tasks. TRP analysis is a high-temporal resolution method used to examine changes in brain activity associated with specific tasks or cognitive processes. In TRP analysis, the power of EEG signals, typically measured in terms of frequency bands (like alpha, beta, theta, etc.), is analyzed to identify how brain activity varies during the performance of a task compared to baseline or resting states. This method is particularly useful for understanding the dynamics of brain function as it allows researchers to pinpoint which areas of the brain are more active or less active during specific cognitive or motor tasks ( Rominger et al., 2022b ; Gubler et al., 2023 ). Reportedly, TRP has wide usage in EEG-based design creativity studies ( Jia et al., 2021 ; Jia and Zeng, 2021 ; Gubler et al., 2022 ).

Event-related synchronization (ERS) and de-synchronization (ERD) have also been reported to be effective in creativity studies ( Wang et al., 2017 ). ERD refers to a decrease in EEG power (in a specific frequency band) compared to a baseline state. The reduction in alpha power, for instance, is often interpreted as an increase in cortical activity. Conversely, ERS denotes an increase in EEG power. The increase in alpha power, for example, is associated with a relative decrease in cortical activity ( Doppelmayr et al., 2002 ; Babiloni et al., 2014 ). Researchers have concluded that these two indicators play a pivotal role in creativity studies as they are significantly correlated with brain dynamics during creativity tasks ( Srinivasan, 2007 ; Babiloni et al., 2014 ; Fink and Benedek, 2014 ).

Brain functional connectivity analysis, EEG source localization, brain topography maps, and event-related potentials analysis are other EEG processing methods which have been employed in a few studies ( Srinivasan, 2007 ; Dietrich and Kanso, 2010 ; Giannopulu et al., 2022 ; Kuznetsov et al., 2023 ). Considering that these methods have not been employed in several studies and with respect to their potential to provide insight into brain activity in transient modes or the correlations between the brain lobes, future studies are suggested to utilize such methods.

3.4.4 Data analysis and knowledge extraction

What was mentioned indicates that EEG frequency analysis is an effective approach for examining brain behavior in creativity and design creativity processes ( Fink and Neubauer, 2006 ; Nguyen and Zeng, 2010 ; Benedek et al., 2011 , 2014 ; Wang et al., 2017 ; Rominger et al., 2018 ; Vieira et al., 2022b ). Analyzing EEG channels in the time or frequency domains across various creativity tasks helps identify key channels contributing to these experiments. TRP and ERD/ERS are well-known EEG analysis methods widely applied in the included studies. Some studies have used other EEG sub-bands such as delta or gamma ( Boot et al., 2017 ; Stevens and Zabelina, 2020 ; Mazza et al., 2023 ). Besides these methods, other studies have utilized EEG connectivity and produced brain topography maps to explore different stages of design creativity. The final stage of EEG-based research involves statistical analysis and classification.

In statistical analysis, researchers examine EEG characteristics like power or alpha band amplitude to determine if there are notable differences during creativity tasks. Comparisons are made across different brain lobes and participants to identify which brain regions are more active during various stages of creativity. Techniques such as TRP, ERD, and ERS are scrutinized using statistical hypothesis testing to see if brain dynamics vary among participants or across different creativity tasks. Additionally, the relationship between EEG features and creativity scores is explored. For instance, researchers might investigate whether there is a link between EEG alpha power and creativity scores like originality and fluency. These statistical analyses can be conducted through either temporal or frequency EEG data.

In the classification phase, EEG data are classified according to different cognitive states of the brain. For example, EEG recordings might be classified based on the stages of creativity tasks, such as idea generation and idea evolution ( Hu et al., 2017 ; Stevens and Zabelina, 2020 ; Lloyd-Cox et al., 2022 ; Ahad et al., 2023 ; Şekerci et al., 2024 ). Except for a few studies which employed machine learning, other studies targeted EEG analysis and statistical methods. In these studies, the main objective is reported to be the classification of designers’ cognitive states, their emotional states, or the level of their creativity. In the included papers, traditional classifiers such as support vector machines and k-nearest neighbor have been employed. Modern deep learning approaches can be used in future studies to extract the hidden valuable information of EEG in design creativity states ( Jia, 2021 ). In open-ended loosely controlled creativity studies, where the phases of creativity are not clearly defined, clustering techniques are employed to categorize or segment EEG time intervals according to the corresponding creativity tasks ( Jia et al., 2021 ; Jia and Zeng, 2021 ). While loosely controlled design creativity studies results in more reliable and natural outcomes compared to strictly controlled ones, analyzing EEG signals in loosely controlled experiments is challenging as the recorded signals are not structured. Clustering methods are applied to microstate analysis to segment EEG signals into pre-defined states and have structured blocks that may align with certain cognitive functions ( Nguyen et al., 2019 ; Jia et al., 2021 ; Jia and Zeng, 2021 ). Therefore, statistical analysis, classification, and clustering form the core methods of data analysis in studies of creativity.

Table 2 represents EEG-based design studies with details about the number of participants, probable psychometric tests, experiment protocol, EEG analysis methods, and main findings. These studies are reported in this paper to highlight some of the differences between creativity and design creativity.

In addition to the studies reported in Table 2 , previous reviews and studies ( Srinivasan, 2007 ; Nguyen and Zeng, 2010 ; Lazar, 2018 ; Chrysikou and Gero, 2020 ; Hu and Shepley, 2022 ; Kim et al., 2022 ; Balters et al., 2023 ) can be found, which comprehensively reported approaches in design creativity neurocognition. Moreover, neurophysiological studies in design creativity are not limited to EEG or the components in Table 2 . For instance, in Liu et al. (2014) , EEG, heart rate (HR), and galvanic skin response (GSR) was used to detect the designer’s emotions in computer-aided design tasks. They determined the emotional states of CAD design tasks by processing CAD operators’ physiological signals and a fuzzy logic model. Aiello (2022) investigated the effects of external factors (such as light) and human ones on design processes, which also explored the association between the behavioral and neurophysiological responses in design creativity experiments. They employed ANOVA tests and found a significant correlation between neurophysiological recordings and daytime, participants’ stress, and their performance in terms of novelty and quality. They also recognized different patterns of brain dynamics corresponding to different kinds of performance measures. Montagna et al. ( Montagna and Candusso, n.d. ; Montagna and Laspia, 2018 ) analyzed brain behavior during the creative ideation process in the earliest phases of product development. In addition to EEG, they employed eye tracking to analyze the correlations between brain responses and eye movements. They utilized statistical analysis to recognize significant differences in brain hemispheres and lobes with respect to participants’ background, academic degree, and gender during the two modes of divergent and convergent thinking. Although some of their results are not consistent with those from the literature, these experiments shed light on the experiment design and provide insights and a framework for future experiments.

4 Discussion

In the present paper, we reviewed EEG-based design creativity studies in terms of their main components such as participants, psychometrics, and creativity tasks. Numerous studies have delved into brain activities associated with design creativity tasks, examined from various angles. While Table 1 showcases studies centered on the Alternate Uses Test (AUT), and the Torrance Tests of Creative Thinking (TTCT), Table 2 summarizes the EEG-based studies on design and design creativity-related tasks. In this section, we are going to discuss the impact of some most important factors including participants, experiment design, and EEG recording and processing on EEG-based design creativity studies. Research gaps and open questions are thus presented based on the discussion.

4.1 Participants

4.1.1 psychometrics: do we have a population that we wished for.

Psychometric testing is crucial for participant selection, with participant screening often based merely on self-reported information or based on their educational background. Examining Tables 1 , 2 reveals that psychometrics are not frequently utilized in design creativity studies, indicating a notable gap in these investigations. Future research should consider establishing a standard set of psychometric tests to create comprehensive participant profiles, particularly focusing on intellectual capabilities ( Jauk et al., 2015 ; Ueno et al., 2015 ; Razumnikova, 2022 ). Taking a look at the studies which employed psychometrics, it could be inferred that there is a correlation between cognitive abilities such as intelligence and creativity ( Arden et al., 2010 ; Jung and Haier, 2013 ). The few psychometric tests employed primarily focus on determining and providing a cognitive profile, encompassing factors such as mood, stress, IQ, anxiety, memory, and intelligence. Notably, intelligence-related assessments are more commonly used compared to other tests. These psychometrics are subject to social masking according to which there is the possibility of unreliable self-report psychometrics being recorded in the experiments. These results might yield less accurate findings.

4.1.2 Sample size and participants’ characteristics

Participant numbers in these studies vary widely, indicating a broad spectrum of sample sizes in this research area. The populations in the studies varied in size, with most having around 40 participants, predominantly students. In the design of experiments, it is important to highlight that the sample size in the selected studies had a mean of 43.76 and a standard deviation of 20.50. It is worth noting that while some studies employed specific experimental designs to determine sample size, many did not have clear and specific criteria for sample size determination, leaving the ideal sample size in such studies an open question. Any studies determine their sample sizes using G* power ( Erdfelder et al., 1996 ; Faul et al., 2007 ), a prevalent tool for power analysis in social and behavioral research.

Initial investigations typically involved healthy adults to more thoroughly understand creativity’s underlying mechanisms. These foundational studies, conducted under optimal conditions, aimed to capture the essence of brain behavior during creative tasks. A handful of studies ( Ayoobi et al., 2022 ; Gubler et al., 2022 , 2023 ) have begun exploring creativity in the context of chronic pain or multiple sclerosis, but broader participant diversity remains an area for further research. Additionally, not all studies provided information on the ages of their participants. There is a noticeable gap in research involving older adults or those with health conditions, suggesting an area ripe for future exploration. Diversity in participant backgrounds, such as varying academic disciplines, could offer richer insights, given creativity’s multifaceted nature and its link to individual skills, affect, and perceived workload ( Yang et al., 2022 ). For instance, the creative approaches of students with engineering thinking might differ significantly from those with art thinking.

Gender was not examined in most included studies. There are just a few studies analyzing the effects of gender on creativity and design creativity ( Razumnikova, 2004 ; Volf et al., 2010 ; Vieira et al., 2020b , 2022a ; Gubler et al., 2022 ). There is a notable need for further investigation to fully understand the impact of gender on the brain dynamics of design creativity.

4.2 Experiment design

While the Alternate Uses Test (AUT) and the Torrance Tests of Creative Thinking (TTCT) are commonly used in creativity research, other tasks like the Remote Associate Task are also prevalent ( Schuler et al., 2019 ; Zhang et al., 2020 ). AUT and figural TTCT are particularly favored in design creativity experiments for their compatibility with design tasks, surpassing verbal or other creativity tasks in applicability ( Boot et al., 2017 ). When considering the creativity tasks in the studies, it is notable that the AUT is more frequently utilized than TTCT, owing to its simplicity and ease of quantifying creativity scores. In contrast, TTCT often requires subjective assessments and expert ratings for scoring ( Rogers et al., 2023 ). However, both TTCT and AUT have undergone modifications in several studies to investigate their potential characteristics further ( Nguyen and Zeng, 2014a ).

While the majority of studies have adhered to strictly controlled frameworks for their experiments, two studies ( Nguyen and Zeng, 2017 ; Nguyen et al., 2019 ; Jia, 2021 ; Jia et al., 2021 ) have adopted novel, loosely controlled approaches, which reportedly yield more natural and reliable results compared to the strictly controlled ones. The rigidity from strictly controlled creativity experiments can exert additional cognitive stress on participants, potentially impacting experimental outcomes. In contrast, the loosely controlled experiments are characterized as self-paced and open-ended, allowing participants ample time to comprehend the design problem, generate ideas, evaluate them, and iterate upon them as needed. Recent behavioral and theoretical research suggests that creativity is better explored within a loosely controlled framework, where sufficient flexibility and freedom are essential. This approach, which contrasts with the highly regulated nature of traditional creativity studies, aims to capture the unpredictable elements of design activities ( Zhao et al., 2020 ). Loosely controlled design studies offer a more realistic portrayal of the actual design process. In these settings, participants enjoy the liberty to develop ideas at their own pace, reflecting true design practices ( Jia, 2021 ). The flexibility in such experiments allows for a broader range of scenarios and outcomes, depending on the complexity and the designers’ understanding of the tests and processes. Prior research has confirmed the effectiveness of this approach, examining its validity from both neuropsychological and design perspectives. Despite their less rigid structure, these loosely controlled experiments are valid and consistent with previous studies. Loosely controlled creativity experiments allow researchers to engage with the nonlinear, ill-defined, open-ended, and intricate nature of creativity tasks. However, it is important to note that data collection and processing can pose challenges in loosely controlled experiments due to the resulting unstructured data. These challenges can be handled through machine learning and signal processing methods ( Zhao et al., 2020 ). For further details regarding the loosely controlled experiments, readers can refer to the provided references ( Zhao et al., 2020 ; Jia et al., 2021 ; Jia and Zeng, 2021 ; Zangeneh Soroush et al., 2024 ).

Participants are affected by external or internal sources during the experiments. Participants are asked not to have caffeine, alcohol, or other stimulating beverages. The influence of stimulants like caffeine, alcohol, and other substances on creative brain dynamics is another under-researched area. While some studies have investigated the impact of cognitive and affective stimulation on creativity [such as pain ( Gubler et al., 2022 , 2023 )], more extensive research is needed. The study concerning environmental factors like temperature, humidity, and lighting, has been noted to significantly influence creativity ( Kimura et al., 2023 ; Lee and Lee, 2023 ). Investigating these environmental aspects could lead to more conclusive findings. Understanding these variables related to participants and their surroundings will enable more holistic and comprehensive creativity studies.

4.3.1 Advantages and disadvantages of EEG being used in design creativity experiments

As previously discussed and generally known in the neuroscience research community, EEG stands out as a simple and cost-effective biosignal with high temporal resolution, facilitating the exploration of microseconds of brain dynamics and providing detailed insights into neural activity, which was summarized in Balters and Steinert (2017) and Soroush et al. (2018) . However, despite its advantages in creativity experiments, EEG recording is prone to high levels of noise and artifacts due to its low amplitude and bandwidth ( Zangeneh Soroush et al., 2022 ). The inclusion of physical movements in design creativity experiments further increases the likelihood of artifacts such as movement and electrode replacement artifacts. Additionally, it is essential to acknowledge that EEG does have limitations, including relatively low spatial resolution. It also provides less information regarding brain behavior compared to other methods such as fMRI which provides detailed spatial brain activity.

4.3.2 EEG processing and data analysis

In design creativity experiments, EEG preprocessing is an inseparable phase ensuring the quality of EEG data in design creativity experiments. Widely employed artifact removal methods include frequency-based filters and independent component analysis. Unfortunately, not all studies provide a detailed description of their artifact removal procedures ( Zangeneh Soroush et al., 2022 ), compromising the reproducibility of the findings. Moreover, while there are standard evaluation metrics for assessing the quality of preprocessed EEG data, these metrics are often overlooked or not discussed in the included papers. It is essential to note that EEG preprocessing extends beyond artifact removal to include the segmentation of unstructured EEG data into well-defined structured EEG windows each of which corresponds to a specific cognitive task. This presents a challenge, particularly in loosely controlled experiments where the cognitive activities of designers during drawing tasks may not be clearly delineated since design tasks are recursive, nonlinear, self-paced, and complex, further complicating the segmentation process ( Nguyen and Zeng, 2012 ; Yang et al., 2022 ).

EEG analysis methods in creativity research predominantly utilize frequency-based analysis, with the alpha band (particularly the upper alpha band, 10–13 Hz) being a key focus due to its effectiveness in capturing various phases of creativity, including divergent and convergent thinking. Across studies, a consistent pattern of decreases in EEG power during design creativity compared to rest has been observed in the low-frequency delta and theta bands, as well as in the lower and upper alpha bands in bilateral frontal, central, and occipital brain regions ( Fink and Benedek, 2014 , 2021 ). This phenomenon, known as task-related desynchronization (TRD), is a common finding in EEG analysis during creativity tasks ( Jausovec and Jausovec, 2000 ; Pidgeon et al., 2016 ). A recurrent observation in numerous studies is the link between alpha band activity and creative cognition, particularly original idea generation and divergent thinking. Alpha synchronization, especially in the right hemisphere and frontal regions, is commonly associated with creative tasks and the generation of original ideas ( Rominger et al., 2022a ). Task-Related Power (TRP) analysis in the alpha band is widely used to decipher creativity-related brain activities. Creativity tasks typically result in increased alpha power, with more innovative responses correlating with stronger alpha synchronization in the posterior cortices. The TRP dynamics, marked by an initial rise, subsequent fall, and a final increase in alpha power, reflect the cognitive processes underlying creative ideation ( Rominger et al., 2018 ). Creativity is influenced by both cognitive processes and affective states, with studies showing that cognitive and affective interventions can enhance creative cognition through stronger prefrontal alpha activity. Different creative phases (e.g., idea generation, evolution, evaluation) exhibit unique EEG activity patterns. For instance, idea evolution is linked to a smaller decrease in lower alpha power, indicating varying attentional demands ( Fink and Benedek, 2014 , 2021 ; Rominger et al., 2019 , 2022a ; Jia and Zeng, 2021 ).

Hemispheric asymmetry plays a crucial role in creativity, with increased alpha power in the right hemisphere linked to the generation of more novel ideas. This asymmetry intensifies as the creative process unfolds. The frontal cortex, particularly through alpha synchronization, is frequently involved in creative cognition and idea evaluation, indicating a role in top-down control and internal attention ( Benedek et al., 2014 ). The parietal cortex, especially the right parietal cortex, is significant for focused internal attention during creative tasks ( Razumnikova, 2004 ; Benedek et al., 2011 , 2014 ).

EEG phase locking is another frequently employed analysis method. Most studies have focused on EEG coherence, EEG power and frequency analysis, brain asymmetry methods (hemispheric lateralization), and EEG temporal methods ( Rominger et al., 2020 ). However, creativity, being a higher-order, complex, nonlinear, and non-stationary cognitive task, suggests that linear and deterministic methods like frequency-based analysis might not fully capture its intricacies. This raises the possibility of incorporating alternative, specifically nonlinear EEG processing methods, which, to our knowledge, have been sparingly used in creativity research ( Stevens and Zabelina, 2020 ; Jia and Zeng, 2021 ). Additional analyses such as wavelet analysis, brain source separation, and source localization hold promise for future research endeavors in this domain.

As mentioned in the previous section, most studies have considered participants without their cognitive profile and characteristics. In addition, the included studies have chosen two main approaches including traditional statistical analysis and machine learning methods ( Goel, 2014 ; Stevens and Zabelina, 2020 ; Fink and Benedek, 2021 ). It should be noted that almost all of the included studies have employed the traditional statistical methods to examine their hypotheses or explore the differences between participants performing creativity tasks ( Fink and Benedek, 2014 , 2021 ; Rominger et al., 2019 , 2022a ; Stevens and Zabelina, 2020 ; Jia and Zeng, 2021 ).

Individual differences, such as intelligence, personality traits, and humor comprehension, also affect EEG patterns during creative tasks. For example, individuals with higher monitoring skills and creative potential exhibit distinct alpha power changes during creative ideation and evaluation ( Perchtold-Stefan et al., 2020 ). The diversity in creativity tasks (e.g., AUT, TTCT, verbal tasks) and EEG analysis methods (e.g., ERD/ERS, TRP, phase locking) used in studies highlights the methodological variety in this field, emphasizing the complexity of creativity research and the necessity for multiple approaches to fully grasp its neurocognitive mechanisms ( Goel, 2014 ; Gero and Milovanovic, 2020 ; Rominger et al., 2020 ; Fink and Benedek, 2021 ; Jia and Zeng, 2021 ).

In statistical analysis, studies often assess the differences in extracted features across different categories. For instance, in a study ( Gopan et al., 2022 ), various features, including nonlinear and temporal features, are extracted from single-channel EEG data to evaluate levels of Visual Creativity during sketching tasks. This involves comparing different groups within the experimental population based on specific features. Notably, the traditional statistical analyses not only provide insights into differences between experimental groups but also offer valuable information for machine learning methods ( Stevens and Zabelina, 2020 ). In another study ( Gubler et al., 2023 ), researchers conducted statistical analysis on frequency-based features to explore the impact of experimentally induced pain on creative ideation among female participants using an adaptation of the Alternate Uses Task (AUT). The analysis involved examining EEG features across channels and brain hemispheres under pain and pain-free conditions. Similarly, in another study ( Benedek et al., 2014 ), researchers conducted statistical analysis on EEG alpha power to investigate the functional significance of alpha power increases in the right parietal cortex, which reflects focused internal attention. They found that the Alternate Uses Task (AUT) inherently relies on internal attention (sensory-independence). Specifically, enforcing internal attention led to increased alpha power only in tasks requiring sensory intake but not in tasks requiring sensory independence. Moreover, sensory-independent tasks generally exhibited higher task-related alpha power levels than sensory intake tasks across both experimental conditions ( Benedek et al., 2011 , 2014 ).

Although most studies have employed statistical measures and analyses to investigate brain dynamics in a limited number of participants, there is a considerable lack of within-subjects and between-subjects analyses ( Rominger et al., 2022b ). There exist several studies which differentiate the brain dynamics of expert and novice designers or engineering students in different fields ( Vieira et al., 2020c , d ); however, more investigations with a larger number of participants are required.

While statistical approaches are commonly employed in EEG-based design creativity studies, there is a notable absence of machine learning methods within this domain. Among the included studies, only one ( Gopan et al., 2022 ) utilized machine learning techniques. In this study, statistical and nonlinear features were extracted from preprocessed EEG signals to classify EEG data into predefined cognitive tasks based on EEG characteristics. The study employed machine learning algorithms such as Long Short-Term Memory (LSTM), Support Vector Machines (SVM), and k-Nearest Neighbor (KNN) to classify EEG samples. These methods were utilized to enhance the understanding of the relationship between EEG signals and cognitive tasks, offering a promising avenue for further exploration in EEG-based design creativity research ( Stevens and Zabelina, 2020 ).

4.4 Research gaps and open questions

In this review, we aimed to empower readers to decide on experiments, EEG markers, feature extraction algorithms, and processing methods based on their study objectives, requirements, and limitations. However, it is essential to acknowledge that this review, while valuable in exploring EEG-based creativity and design creativity, has certain limitations which are summarized below:

1. Our review focuses on just the neuroscientific aspects of prior creativity and design creativity studies. Design methodologies and creativity models should be reviewed in other studies.

2. Included studies have employed only a limited number of adult participants with no mental or physical disorder.

3. Most studies have utilized fNIRS or EEG as they are more suitable for design creativity experiments, but we only focused on EEG based studies.

According to what was discussed above, it is obvious that EEG-based design creativity studies have been quite recently introduced to the field of design. This indicates that research gaps and open questions should be addressed for future studies. The following provides ten open questions we extracted from this review.

1. What constitutes an optimal protocol for participant selection, creativity task design, and procedural guidelines in EEG-based design creativity research?

2. How can we reconcile inconsistencies arising from variations in creativity tests and procedures across different studies? Furthermore, how can we address disparities between findings in EEG and fMRI studies?

3. What notable disparities exist in brain dynamics when comparing different creativity tests within the realm of design creativity?

4. In what ways can additional physiological markers, such as ECG and eye tracking, contribute to understanding neurocognition in design creativity?

5. How can alternative EEG processing methods beyond frequency-based analysis enhance the study of brain behavior during design creativity tasks?

6. What strategies can be employed to integrate combinational methods like EEG-fMRI to investigate design creativity?

7. How can the utilization of advanced wearable recording systems facilitate the implementation of more naturalistic and ecologically valid design creativity experiments?

8. What are the most effective approaches for transforming unstructured data into organized formats in loosely controlled creativity experiments?

9. What neural mechanisms are associated with design creativity in various mental and physical disorders?

10. In what ways can the application of advanced EEG processing methods offer deeper insights into the neurocognitive aspects of design creativity?

5 Conclusion

Design creativity stands as one of the most intricate high-order cognitive tasks, encompassing both mental and physical activities. It is a domain where design and creativity are intertwined, each representing a complex cognitive process. The human brain, an immensely sophisticated biological system, undergoes numerous intricate dynamics to facilitate creative abilities. The evolution of neuroimaging techniques, computational technologies, and machine learning has now enabled us to delve deeper into the brain behavior in design creativity tasks.

This literature review aims to scrutinize and highlight pivotal, and foundational research in this area. Our goal is to provide essential, comprehensive, and practical insights for future investigators in this field. We employed the snowball search method to reach the final set of papers which met our inclusion criteria. In this review, more than 1,500 studies were monitored and assessed as EEG-based creativity and design creativity studies. We reviewed over 120 studies with respect to their experimental details including participants, (design) creativity tasks, EEG analyses methods, and their main findings. Our review reports the most important experimental details of EEG-based studies and it also highlights research gaps, potential future trends, and promising avenues for future investigations.

Author contributions

MZ: Formal analysis, Investigation, Writing – original draft, Writing – review & editing. YZ: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing – review & editing.

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by NSERC Discovery Grant (RGPIN-2019-07048), NSERC CRD Project (CRDPJ514052-17), and NSERC Design Chairs Program (CDEPJ 485989-14).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Abraham, A., Rutter, B., Bantin, T., and Hermann, C. (2018). Creative conceptual expansion: a combined fMRI replication and extension study to examine individual differences in creativity. Neuropsychologia 118, 29–39. doi: 10.1016/j.neuropsychologia.2018.05.004

Crossref Full Text | Google Scholar

Agnoli, S., Zanon, M., Mastria, S., Avenanti, A., and Corazza, G. E. (2020). Predicting response originality through brain activity: an analysis of changes in EEG alpha power during the generation of alternative ideas. NeuroImage 207:116385. doi: 10.1016/j.neuroimage.2019.116385

PubMed Abstract | Crossref Full Text | Google Scholar

Agnoli, S., Zenari, S., Mastria, S., and Corazza, G. E. (2021). How do you feel in virtual environments? The role of emotions and openness trait over creative performance. Creativity 8, 148–164. doi: 10.2478/ctra-2021-0010

Ahad, M. T., Hartog, T., Alhashim, A. G., Marshall, M., and Siddique, Z. (2023). Electroencephalogram experimentation to understand creativity of mechanical engineering students. ASME Open J. Eng. 2:21005. doi: 10.1115/1.4056473

Aiello, L. (2022). Time of day and background: How they affect designers neurophysiological and behavioural performance in divergent thinking. Polytechnic of Turin.

Google Scholar

Almeida, L. S., Prieto, L. P., Ferrando, M., Oliveira, E., and Ferrándiz, C. (2008). Torrance test of creative thinking: the question of its construct validity. Think. Skills Creat. 3, 53–58. doi: 10.1016/j.tsc.2008.03.003

Arden, R., Chavez, R. S., Grazioplene, R., and Jung, R. E. (2010). Neuroimaging creativity: a psychometric view. Behav. Brain Res. 214, 143–156. doi: 10.1016/j.bbr.2010.05.015

Ayoobi, F., Charmahini, S. A., Asadollahi, Z., Solati, S., Azin, H., Abedi, P., et al. (2022). Divergent and convergent thinking abilities in multiple sclerosis patients. Think. Skills Creat. 45:101065. doi: 10.1016/j.tsc.2022.101065

Babiloni, C., Del Percio, C., Arendt-Nielsen, L., Soricelli, A., Romani, G. L., Rossini, P. M., et al. (2014). Cortical EEG alpha rhythms reflect task-specific somatosensory and motor interactions in humans. Clin. Neurophysiol. 125, 1936–1945. doi: 10.1016/j.clinph.2014.04.021

Baillet, S., Mosher, J. C., and Leahy, R. M. (2001). Electromagnetic brain mapping. IEEE Signal Process. Mag. 18, 14–30. doi: 10.1109/79.962275

Balters, S., and Steinert, M. (2017). Capturing emotion reactivity through physiology measurement as a foundation for affective engineering in engineering design science and engineering practices. J. Intell. Manuf. 28, 1585–1607. doi: 10.1007/s10845-015-1145-2

Balters, S., Weinstein, T., Mayseless, N., Auernhammer, J., Hawthorne, G., Steinert, M., et al. (2023). Design science and neuroscience: a systematic review of the emergent field of design neurocognition. Des. Stud. 84:101148. doi: 10.1016/j.destud.2022.101148

Beaty, R. E., Christensen, A. P., Benedek, M., Silvia, P. J., and Schacter, D. L. (2017). Creative constraints: brain activity and network dynamics underlying semantic interference during idea production. NeuroImage 148, 189–196. doi: 10.1016/j.neuroimage.2017.01.012

Benedek, M., Bergner, S., Könen, T., Fink, A., and Neubauer, A. C. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia 49, 3505–3511. doi: 10.1016/j.neuropsychologia.2011.09.004

Benedek, M., and Fink, A. (2019). Toward a neurocognitive framework of creative cognition: the role of memory, attention, and cognitive control. Curr. Opin. Behav. Sci. 27, 116–122. doi: 10.1016/j.cobeha.2018.11.002

Benedek, M., Schickel, R. J., Jauk, E., Fink, A., and Neubauer, A. C. (2014). Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia 56, 393–400. doi: 10.1016/j.neuropsychologia.2014.02.010

Bhattacharya, J., and Petsche, H. (2005). Drawing on mind’s canvas: differences in cortical integration patterns between artists and non-artists. Hum. Brain Mapp. 26, 1–14. doi: 10.1002/hbm.20104

Boden, M. A. (2004). The creative mind: Myths and mechanisms . London and New York: Routledge.

Boot, N., Baas, M., Mühlfeld, E., de Dreu, C. K. W., and van Gaal, S. (2017). Widespread neural oscillations in the delta band dissociate rule convergence from rule divergence during creative idea generation. Neuropsychologia 104, 8–17. doi: 10.1016/j.neuropsychologia.2017.07.033

Borgianni, Y., and Maccioni, L. (2020). Review of the use of neurophysiological and biometric measures in experimental design research. Artif. Intell. Eng. Des. Anal. Manuf. 34, 248–285. doi: 10.1017/S0890060420000062

Braun, V., and Clarke, V. (2012). “Thematic analysis” in APA handbook of research methods in psychology, Vol 2: Research designs: Quantitative, qualitative, neuropsychological, and biological . eds. H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, and K. J. Sher (American Psychological Association), 57–71.

Camarda, A., Salvia, É., Vidal, J., Weil, B., Poirel, N., Houdé, O., et al. (2018). Neural basis of functional fixedness during creative idea generation: an EEG study. Neuropsychologia 118, 4–12. doi: 10.1016/j.neuropsychologia.2018.03.009

Chang, Y., Kao, J.-Y., and Wang, Y.-Y. (2022). Influences of virtual reality on design creativity and design thinking. Think. Skills Creat. 46:101127. doi: 10.1016/j.tsc.2022.101127

Choi, J. W., and Kim, K. H. (2018). Methods for functional connectivity analysis. in Computational EEG analysis. Biological and medical physics, biomedical engineering . ed. I. M. CH (Singapore: Springer).

Chrysikou, E. G., and Gero, J. S. (2020). Using neuroscience techniques to understand and improve design cognition. AIMS Neurosci. 7, 319–326. doi: 10.3934/Neuroscience.2020018

Cropley, A. J. (2000). Defining and measuring creativity: are creativity tests worth using? Roeper Rev. 23, 72–79. doi: 10.1080/02783190009554069

Cropley, D. H. (2015a). “Chapter 2 – The importance of creativity in engineering” in Creativity in engineering . ed. D. H. Cropley (London: Academic Press), 13–34.

Cropley, D. H. (2015b). “Chapter 3 – Phases: creativity and the design process” in Creativity in engineering . ed. D. H. Cropley (London: Academic Press), 35–61.

Custo, A., Van De Ville, D., Wells, W. M., Tomescu, M. I., Brunet, D., and Michel, C. M. (2017). Electroencephalographic resting-state networks: source localization of microstates. Brain Connect. 7, 671–682. doi: 10.1089/brain.2016.0476

Danko, S. G., Shemyakina, N. V., Nagornova, Z. V., and Starchenko, M. G. (2009). Comparison of the effects of the subjective complexity and verbal creativity on EEG spectral power parameters. Hum. Physiol. 35, 381–383. doi: 10.1134/S0362119709030153

Dietrich, A., and Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol. Bull. 136, 822–848. doi: 10.1037/a0019749

Doppelmayr, M., Klimesch, W., Stadler, W., Pöllhuber, D., and Heine, C. (2002). EEG alpha power and intelligence. Intelligence 30, 289–302. doi: 10.1016/S0160-2896(01)00101-5

Erdfelder, E., Faul, F., and Buchner, A. (1996). GPOWER: a general power analysis program. Behav. Res. Methods Instrum. Comput. 28, 1–11. doi: 10.3758/BF03203630

Eymann, V., Beck, A.-K., Jaarsveld, S., Lachmann, T., and Czernochowski, D. (2022). Alpha oscillatory evidence for shared underlying mechanisms of creativity and fluid intelligence above and beyond working memory-related activity. Intelligence 91:101630. doi: 10.1016/j.intell.2022.101630

Faul, F., Erdfelder, E., Lang, A.-G., and Buchner, A. (2007). G*power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191. doi: 10.3758/BF03193146

Fink, A., and Benedek, M. (2014). EEG alpha power and creative ideation. Neurosci. Biobehav. Rev. 44, 111–123. doi: 10.1016/j.neubiorev.2012.12.002

Fink, A., and Benedek, M. (2021). The neuroscience of creativity. e-Neuroforum 25, 231–240. doi: 10.1515/nf-2019-0006

Fink, A., Benedek, M., Koschutnig, K., Papousek, I., Weiss, E. M., Bagga, D., et al. (2018). Modulation of resting-state network connectivity by verbal divergent thinking training. Brain Cogn. 128, 1–6. doi: 10.1016/j.bandc.2018.10.008

Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., et al. (2009a). The creative brain: investigation of brain activity during creative problem solving by means of EEG and fMRI. Hum. Brain Mapp. 30, 734–748. doi: 10.1002/hbm.20538

Fink, A., Graif, B., and Neubauer, A. C. (2009b). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. NeuroImage 46, 854–862. doi: 10.1016/j.neuroimage.2009.02.036

Fink, A., and Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: differential effects of sex and verbal intelligence. Int. J. Psychophysiol. 62, 46–53. doi: 10.1016/j.ijpsycho.2006.01.001

Fink, A., and Neubauer, A. C. (2008). Eysenck meets Martindale: the relationship between extraversion and originality from the neuroscientific perspective. Personal. Individ. Differ. 44, 299–310. doi: 10.1016/j.paid.2007.08.010

Fink, A., Schwab, D., and Papousek, I. (2011). Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions. Int. J. Psychophysiol. 82, 233–239. doi: 10.1016/j.ijpsycho.2011.09.003

Gabard-Durnam, L. J., Mendez Leal, A. S., Wilkinson, C. L., and Levin, A. R. (2018). The Harvard automated processing pipeline for electroencephalography (HAPPE): standardized processing software for developmental and high-Artifact data. Front. Neurosci. 12:97. doi: 10.3389/fnins.2018.00097

Gao, M., Zhang, D., Wang, Z., Liang, B., Cai, Y., Gao, Z., et al. (2017). Mental rotation task specifically modulates functional connectivity strength of intrinsic brain activity in low frequency domains: a maximum uncertainty linear discriminant analysis. Behav. Brain Res. 320, 233–243. doi: 10.1016/j.bbr.2016.12.017

Gero, J. S. (1990). Design prototypes: a knowledge representation schema for design. AI Mag. 11:26. doi: 10.1609/aimag.v11i4.854

Gero, J. S. (1994). “Introduction: creativity and design” in Artificial intelligence and creativity: An interdisciplinary approach . ed. T. Dartnall (Netherlands: Springer), 259–267.

Gero, J. S. (1996). Creativity, emergence and evolution in design. Knowl. Based Syst. 9, 435–448. doi: 10.1016/S0950-7051(96)01054-4

Gero, J. (2011). Design creativity 2010 doi: 10.1007/978-0-85729-224-7

Gero, J. S. (2020). Nascent directions for design creativity research. Int. J. Des. Creat. Innov. 8, 144–146. doi: 10.1080/21650349.2020.1767885

Gero, J. S., and Milovanovic, J. (2020). A framework for studying design thinking through measuring designers’ minds, bodies and brains. Design Sci. 6:e19. doi: 10.1017/dsj.2020.15

Giannopulu, I., Brotto, G., Lee, T. J., Frangos, A., and To, D. (2022). Synchronised neural signature of creative mental imagery in reality and augmented reality. Heliyon 8:e09017. doi: 10.1016/j.heliyon.2022.e09017

Goel, V. (2014). Creative brains: designing in the real world. Front. Hum. Neurosci. 8, 1–14. doi: 10.3389/fnhum.2014.00241

Göker, M. H. (1997). The effects of experience during design problem solving. Des. Stud. 18, 405–426. doi: 10.1016/S0142-694X(97)00009-4

Gopan, K. G., Reddy, S. V. R. A., Rao, M., and Sinha, N. (2022). Analysis of single channel electroencephalographic signals for visual creativity: a pilot study. Biomed. Signal Process. Control. 75:103542. doi: 10.1016/j.bspc.2022.103542

Grabner, R. H., Fink, A., and Neubauer, A. C. (2007). Brain correlates of self-rated originality of ideas: evidence from event-related power and phase-locking changes in the EEG. Behav. Neurosci. 121, 224–230. doi: 10.1037/0735-7044.121.1.224

Gubler, D. A., Rominger, C., Grosse Holtforth, M., Egloff, N., Frickmann, F., Goetze, B., et al. (2022). The impact of chronic pain on creative ideation: an examination of the underlying attention-related psychophysiological mechanisms. Eur. J. Pain (United Kingdom) 26, 1768–1780. doi: 10.1002/ejp.2000

Gubler, D. A., Rominger, C., Jakob, D., and Troche, S. J. (2023). How does experimentally induced pain affect creative ideation and underlying attention-related psychophysiological mechanisms? Neuropsychologia 183:108514. doi: 10.1016/j.neuropsychologia.2023.108514

Guilford, J. P. (1959). “Traits of creativity” in Creativity and its cultivation . ed. H. H. Anderson (New York: Harper & Row), 142–161.

Guilford, J. P. (1967). The nature of human intelligence . New York, NY, US: McGraw-Hill.

Guzik, E. E., Byrge, C., and Gilde, C. (2023). The originality of machines: AI takes the Torrance test. Journal of Creativity 33:100065. doi: 10.1016/j.yjoc.2023.100065

Haner, U.-E. (2005). Spaces for creativity and innovation in two established organizations. Creat. Innov. Manag. 14, 288–298. doi: 10.1111/j.1476-8691.2005.00347.x

Hao, N., Ku, Y., Liu, M., Hu, Y., Bodner, M., Grabner, R. H., et al. (2016). Reflection enhances creativity: beneficial effects of idea evaluation on idea generation. Brain Cogn. 103, 30–37. doi: 10.1016/j.bandc.2016.01.005

Hartog, T. (2021). EEG investigations of creativity in engineering and engineering design. shareok.org . Available at: https://shareok.org/handle/11244/329532

Hartog, T., Marshall, M., Alhashim, A., Ahad, M. T., et al. (2020). Work in Progress: using neuro-responses to understand creativity, the engineering design process, and concept generation. Paper Presented at …. Available at: https://par.nsf.gov/biblio/10208519

Hetzroni, O., Agada, H., and Leikin, M. (2019). Creativity in autism: an examination of general and mathematical creative thinking among children with autism Spectrum disorder and children with typical development. J. Autism Dev. Disord. 49, 3833–3844. doi: 10.1007/s10803-019-04094-x

Hu, W.-L., Booth, J. W., and Reid, T. (2017). The relationship between design outcomes and mental states during ideation. J. Mech. Des. 139:51101. doi: 10.1115/1.4036131

Hu, Y., Ouyang, J., Wang, H., Zhang, J., Liu, A., Min, X., et al. (2022). Design meets neuroscience: an electroencephalogram study of design thinking in concept generation phase. Front. Psychol. 13:832194. doi: 10.3389/fpsyg.2022.832194

Hu, L., and Shepley, M. M. C. (2022). Design meets neuroscience: a preliminary review of design research using neuroscience tools. J. Inter. Des. 47, 31–50. doi: 10.1111/joid.12213

Japardi, K., Bookheimer, S., Knudsen, K., Ghahremani, D. G., and Bilder, R. M. (2018). Functional magnetic resonance imaging of divergent and convergent thinking in big-C creativity. Neuropsychologia 118, 59–67. doi: 10.1016/j.neuropsychologia.2018.02.017

Jauk, E., Benedek, M., and Neubauer, A. C. (2012). Tackling creativity at its roots: evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. Int. J. Psychophysiol. 84, 219–225. doi: 10.1016/j.ijpsycho.2012.02.012

Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., and Benedek, M. (2015). Gray matter correlates of creative potential: a latent variable voxel-based morphometry study. NeuroImage 111, 312–320. doi: 10.1016/j.neuroimage.2015.02.002

Jausovec, N., and Jausovec, K. (2000). EEG activity during the performance of complex mental problems. Int. J. Psychophysiol. 36, 73–88. doi: 10.1016/S0167-8760(99)00113-0

Jia, W. (2021). Investigating neurocognition in design creativity under loosely controlled experiments supported by EEG microstate analysis [Concordia University]. Available at: https://spectrum.library.concordia.ca/id/eprint/988724/

Jia, W., von Wegner, F., Zhao, M., and Zeng, Y. (2021). Network oscillations imply the highest cognitive workload and lowest cognitive control during idea generation in open-ended creation tasks. Sci. Rep. 11:24277. doi: 10.1038/s41598-021-03577-1

Jia, W., and Zeng, Y. (2021). EEG signals respond differently to idea generation, idea evolution and evaluation in a loosely controlled creativity experiment. Sci. Rep. 11:2119. doi: 10.1038/s41598-021-81655-0

Jung, R. E., and Haier, R. J. (2013). “Creativity and intelligence: brain networks that link and differentiate the expression of genius” in Neuroscience of creativity . eds. O. Vartanian, A. S. Bristol, and J. C. Kaufman (Cambridge, MA: MIT Press). 233–254. (Accessed 18 June 2024).

Jung, R. E., and Vartanian, O. (Eds.). (2018). The Cambridge handbook of the neuroscience of creativity . Cambridge: Cambridge University Press.

Kaufman, J. C., Beghetto, R. A., Baer, J., and Ivcevic, Z. (2010). Creativity polymathy: what Benjamin Franklin can teach your kindergartener. Learn. Individ. Differ. 20, 380–387. doi: 10.1016/j.lindif.2009.10.001

Kaufman, J. C., John Baer, J. C. C., and Sexton, J. D. (2008). A comparison of expert and nonexpert Raters using the consensual assessment technique. Creat. Res. J. 20, 171–178. doi: 10.1080/10400410802059929

Kaufman, J. C., and Sternberg, R. J. (Eds.). (2010). The Cambridge handbook of creativity. Cambridge University Press.

Kim, N., Chung, S., and Kim, D. I. (2022). Exploring EEG-based design studies: a systematic review. Arch. Des. Res. 35, 91–113. doi: 10.15187/adr.2022.11.35.4.91

Kimura, T., Mizumoto, T., Torii, Y., Ohno, M., Higashino, T., and Yagi, Y. (2023). Comparison of the effects of indoor and outdoor exercise on creativity: an analysis of EEG alpha power. Front. Psychol. 14:1161533. doi: 10.3389/fpsyg.2023.1161533

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195. doi: 10.1016/s0165-0173(98)00056-3

Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., and Schwaiger, J. (1998). Induced alpha band power changes in the human EEG and attention. Neurosci. Lett. 244, 73–76. doi: 10.1016/S0304-3940(98)00122-0

Kruk, K. A., Aravich, P. F., Deaver, S. P., and deBeus, R. (2014). Comparison of brain activity during drawing and clay sculpting: a preliminary qEEG study. Art Ther. 31, 52–60. doi: 10.1080/07421656.2014.903826

Kuznetsov, I., Kozachuk, N., Kachynska, T., Zhuravlov, O., Zhuravlova, O., and Rakovets, O. (2023). Inner speech as a brain mechanism for preconditioning creativity process. East Eur. J. Psycholinguist. 10, 136–151. doi: 10.29038/eejpl.2023.10.1.koz

Lazar, L. (2018). The cognitive neuroscience of design creativity. J. Exp. Neurosci. 12:117906951880966. doi: 10.1177/1179069518809664

Lee, J. H., and Lee, S. (2023). Relationships between physical environments and creativity: a scoping review. Think. Skills Creat. 48:101276. doi: 10.1016/j.tsc.2023.101276

Leikin, M. (2013). The effect of bilingualism on creativity: developmental and educational perspectives. Int. J. Biling. 17, 431–447. doi: 10.1177/1367006912438300

Li, S., Becattini, N., and Cascini, G. (2021). Correlating design performance to EEG activation: early evidence from experimental data. Proceedings of the Design Society. Available at: https://www.cambridge.org/core/journals/proceedings-of-the-design-society/article/correlating-design-performance-to-eeg-activation-early-evidence-from-experimental-data/8F4FCB64135209CAD9B97C1433E7CB99

Liang, C., Chang, C. C., and Liu, Y. C. (2019). Comparison of the cerebral activities exhibited by expert and novice visual communication designers during idea incubation. Int. J. Des. Creat. Innov. 7, 213–236. doi: 10.1080/21650349.2018.1562995

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P. A., et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J. Clin. Epidemiol. 62, e1–e34. doi: 10.1016/j.jclinepi.2009.06.006

Liu, L., Li, Y., Xiong, Y., Cao, J., and Yuan, P. (2018). An EEG study of the relationship between design problem statements and cognitive behaviors during conceptual design. Artif. Intell. Eng. Des. Anal. Manuf. 32, 351–362. doi: 10.1017/S0890060417000683

Liu, L., Nguyen, T. A., Zeng, Y., and Hamza, A. B. (2016). Identification of relationships between electroencephalography (EEG) bands and design activities. Volume 7: doi: 10.1115/DETC2016-59104

Liu, Y., Ritchie, J. M., Lim, T., Kosmadoudi, Z., Sivanathan, A., and Sung, R. C. W. (2014). A fuzzy psycho-physiological approach to enable the understanding of an engineer’s affect status during CAD activities. Comput. Aided Des. 54, 19–38. doi: 10.1016/j.cad.2013.10.007

Lloyd-Cox, J., Chen, Q., and Beaty, R. E. (2022). The time course of creativity: multivariate classification of default and executive network contributions to creative cognition over time. Cortex 156, 90–105. doi: 10.1016/j.cortex.2022.08.008

Lou, S., Feng, Y., Li, Z., Zheng, H., and Tan, J. (2020). An integrated decision-making method for product design scheme evaluation based on cloud model and EEG data. Adv. Eng. Inform. 43:101028. doi: 10.1016/j.aei.2019.101028

Lukačević, F., Becattini, N., Perišić, M. M., and Škec, S. (2023). Differences in engineers’ brain activity when CAD modelling from isometric and orthographic projections. Sci. Rep. 13:9726. doi: 10.1038/s41598-023-36823-9

Martindale, C., and Hasenfus, N. (1978). EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biol. Psychol. 6, 157–167. doi: 10.1016/0301-0511(78)90018-2

Martindale, C., Hines, D., Mitchell, L., and Covello, E. (1984). EEG alpha asymmetry and creativity. Personal. Individ. Differ. 5, 77–86. doi: 10.1016/0191-8869(84)90140-5

Martindale, C., and Mines, D. (1975). Creativity and cortical activation during creative, intellectual and eeg feedback tasks. Biol. Psychol. 3, 91–100. doi: 10.1016/0301-0511(75)90011-3

Mastria, S., Agnoli, S., Zanon, M., Acar, S., Runco, M. A., and Corazza, G. E. (2021). Clustering and switching in divergent thinking: neurophysiological correlates underlying flexibility during idea generation. Neuropsychologia 158:107890. doi: 10.1016/j.neuropsychologia.2021.107890

Mayseless, N., Aharon-Peretz, J., and Shamay-Tsoory, S. (2014). Unleashing creativity: the role of left temporoparietal regions in evaluating and inhibiting the generation of creative ideas. Neuropsychologia 64, 157–168. doi: 10.1016/j.neuropsychologia.2014.09.022

Mazza, A., Dal Monte, O., Schintu, S., Colombo, S., Michielli, N., Sarasso, P., et al. (2023). Beyond alpha-band: the neural correlate of creative thinking. Neuropsychologia 179:108446. doi: 10.1016/j.neuropsychologia.2022.108446

Mokyr, J. (1990). The lever of riches: Technological creativity and economic progress : New York and Oxford: Oxford University Press.

Montagna, F., and Candusso, A. (n.d.). Electroencephalogram: the definition of the assessment methodology for verbal responses and the analysis of brain waves in an idea creativity experiment. In webthesis.biblio.polito.it. Available at: https://webthesis.biblio.polito.it/13445/1/tesi.pdf

Montagna, F., and Laspia, A. (2018). A new approach to investigate the design process. webthesis.biblio.polito.it. Available at: https://webthesis.biblio.polito.it/10011/1/tesi.pdf

Nagai, Y., and Gero, J. (2012). Design creativity. J. Eng. Des. 23, 237–239. doi: 10.1080/09544828.2011.642495

Nair, N., Hegarty, J. P., Ferguson, B. J., Hecht, P. M., Tilley, M., Christ, S. E., et al. (2020). Effects of stress on functional connectivity during problem solving. NeuroImage 208:116407. doi: 10.1016/j.neuroimage.2019.116407

Nguyen, P., Nguyen, T. A., and Zeng, Y. (2018). Empirical approaches to quantifying effort, fatigue and concentration in the conceptual design process. Res. Eng. Des. 29, 393–409. doi: 10.1007/s00163-017-0273-4

Nguyen, P., Nguyen, T. A., and Zeng, Y. (2019). Segmentation of design protocol using EEG. Artif. Intell. Eng. Des. Anal. Manuf. 33, 11–23. doi: 10.1017/S0890060417000622

Nguyen, T. A., and Zeng, Y. (2010). Analysis of design activities using EEG signals. Vol. 5: 277–286. doi: 10.1115/DETC2010-28477

Nguyen, T. A., and Zeng, Y. (2012). A theoretical model of design creativity: nonlinear design dynamics and mental stress-creativity relation. J. Integr. Des. Process. Sci. 16, 65–88. doi: 10.3233/jid-2012-0007

Nguyen, T. A., and Zeng, Y. (2014a). A physiological study of relationship between designer’s mental effort and mental stress during conceptual design. Comput. Aided Des. 54, 3–18. doi: 10.1016/j.cad.2013.10.002

Nguyen, T. A., and Zeng, Y. (2014b). A preliminary study of EEG spectrogram of a single subject performing a creativity test. Proceedings of the 2014 international conference on innovative design and manufacturing (ICIDM), 16–21. doi: 10.1109/IDAM.2014.6912664

Nguyen, T. A., and Zeng, Y. (2017). Effects of stress and effort on self-rated reports in experimental study of design activities. J. Intell. Manuf. 28, 1609–1622. doi: 10.1007/s10845-016-1196-z

Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113. doi: 10.1016/0028-3932(71)90067-4

Pahl, G., Beitz, W., Feldhusen, J., and Grote, K.-H. (1988). Engineering design: A systematic approach . ( Vol. 3 ). London: Springer.

Peng, W. (2019). EEG preprocessing and denoising. In EEG signal processing and feature extraction. doi: 10.1007/978-981-13-9113-2_5

Perchtold-Stefan, C. M., Papousek, I., Rominger, C., Schertler, M., Weiss, E. M., and Fink, A. (2020). Humor comprehension and creative cognition: shared and distinct neurocognitive mechanisms as indicated by EEG alpha activity. NeuroImage 213:116695. doi: 10.1016/j.neuroimage.2020.116695

Petsche, H. (1996). Approaches to verbal, visual and musical creativity by EEG coherence analysis. Int. J. Psychophysiol. 24, 145–159. doi: 10.1016/S0167-8760(96)00050-5

Petsche, H., Kaplan, S., von Stein, A., and Filz, O. (1997). The possible meaning of the upper and lower alpha frequency ranges for cognitive and creative tasks. Int. J. Psychophysiol. 26, 77–97. doi: 10.1016/S0167-8760(97)00757-5

Pidgeon, L. M., Grealy, M., Duffy, A. H. B., Hay, L., McTeague, C., Vuletic, T., et al. (2016). Functional neuroimaging of visual creativity: a systematic review and meta-analysis. Brain Behavior 6:e00540. doi: 10.1002/brb3.540

Prent, N., and Smit, D. J. A. (2020). The dynamics of resting-state alpha oscillations predict individual differences in creativity. Neuropsychologia 142:107456. doi: 10.1016/j.neuropsychologia.2020.107456

Razumnikova, O. M. (2004). Gender differences in hemispheric organization during divergent thinking: an EEG investigation in human subjects. Neurosci. Lett. 362, 193–195. doi: 10.1016/j.neulet.2004.02.066

Razumnikova, O. M. (2022). Baseline measures of EEG power as correlates of the verbal and nonverbal components of creativity and intelligence. Neurosci. Behav. Physiol. 52, 124–134. doi: 10.1007/s11055-022-01214-6

Razumnikova, O. M., Volf, N. V., and Tarasova, I. V. (2009). Strategy and results: sex differences in electrographic correlates of verbal and figural creativity. Hum. Physiol. 35, 285–294. doi: 10.1134/S0362119709030049

Rogers, C. J., Tolmie, A., Massonnié, J., et al. (2023). Complex cognition and individual variability: a mixed methods study of the relationship between creativity and executive control. Front. Psychol. 14:1191893. doi: 10.3389/fpsyg.2023.1191893

Rominger, C., Benedek, M., Lebuda, I., Perchtold-Stefan, C. M., Schwerdtfeger, A. R., Papousek, I., et al. (2022a). Functional brain activation patterns of creative metacognitive monitoring. Neuropsychologia 177:108416. doi: 10.1016/j.neuropsychologia.2022.108416

Rominger, C., Gubler, D. A., Makowski, L. M., and Troche, S. J. (2022b). More creative ideas are associated with increased right posterior power and frontal-parietal/occipital coupling in the upper alpha band: a within-subjects study. Int. J. Psychophysiol. 181, 95–103. doi: 10.1016/j.ijpsycho.2022.08.012

Rominger, C., Papousek, I., Perchtold, C. M., Benedek, M., Weiss, E. M., Schwerdtfeger, A., et al. (2019). Creativity is associated with a characteristic U-shaped function of alpha power changes accompanied by an early increase in functional coupling. Cogn. Affect. Behav. Neurosci. 19, 1012–1021. doi: 10.3758/s13415-019-00699-y

Rominger, C., Papousek, I., Perchtold, C. M., Benedek, M., Weiss, E. M., Weber, B., et al. (2020). Functional coupling of brain networks during creative idea generation and elaboration in the figural domain. NeuroImage 207:116395. doi: 10.1016/j.neuroimage.2019.116395

Rominger, C., Papousek, I., Perchtold, C. M., Weber, B., Weiss, E. M., and Fink, A. (2018). The creative brain in the figural domain: distinct patterns of EEG alpha power during idea generation and idea elaboration. Neuropsychologia 118, 13–19. doi: 10.1016/j.neuropsychologia.2018.02.013

Runco, M. A., and Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creat. Res. J. 24, 66–75. doi: 10.1080/10400419.2012.652929

Runco, M. A., and Jaeger, G. J. (2012). The standard definition of creativity. Creat. Res. J. 24, 92–96. doi: 10.1080/10400419.2012.650092

Runco, M. A., and Mraz, W. (1992). Scoring divergent thinking tests using total ideational output and a creativity index. Educ. Psychol. Meas. 52, 213–221. doi: 10.1177/001316449205200126

Sanei, S., and Chambers, J. A. (2013). EEG signal processing . John Wiley & Sons.

Schuler, A. L., Tik, M., Sladky, R., Luft, C. D. B., Hoffmann, A., Woletz, M., et al. (2019). Modulations in resting state networks of subcortical structures linked to creativity. NeuroImage 195, 311–319. doi: 10.1016/j.neuroimage.2019.03.017

Schwab, D., Benedek, M., Papousek, I., Weiss, E. M., and Fink, A. (2014). The time-course of EEG alpha power changes in creative ideation. Front. Hum. Neurosci. 8:310. doi: 10.3389/fnhum.2014.00310

Şekerci, Y., Kahraman, M. U., Özturan, Ö., Çelik, E., and Ayan, S. Ş. (2024). Neurocognitive responses to spatial design behaviors and tools among interior architecture students: a pilot study. Sci. Rep. 14:4454. doi: 10.1038/s41598-024-55182-7

Shemyakina, N. V., and Dan’ko, S. G. (2004). Influence of the emotional perception of a signal on the electroencephalographic correlates of creative activity. Hum. Physiol. 30, 145–151. doi: 10.1023/B:HUMP.0000021641.41105.86

Simon, H. A. (1996). The sciences of the artificial . 3rd Edn: MIT Press.

Simonton, D. K. (2000). Creativity: cognitive, personal, developmental, and social aspects. American psychologist, 55:151.

Simonton, D. K. (2012). Taking the U.S. patent office criteria seriously: a quantitative three-criterion creativity definition and its implications. Creat. Res. J. 24, 97–106. doi: 10.1080/10400419.2012.676974

Soroush, M. Z., Maghooli, K., Setarehdan, S. K., and Nasrabadi, A. M. (2018). A novel method of eeg-based emotion recognition using nonlinear features variability and Dempster–Shafer theory. Biomed. Eng.: Appl., Basis Commun. 30:1850026. doi: 10.4015/S1016237218500266

Srinivasan, N. (2007). Cognitive neuroscience of creativity: EEG based approaches. Methods 42, 109–116. doi: 10.1016/j.ymeth.2006.12.008

Steingrüber, H.-J., Lienert, G. A., and Gustav, A. (1971). Hand-Dominanz-Test : Verlag für Psychologie Available at: https://cir.nii.ac.jp/crid/1130282273024678144 .

Sternberg, R. J. (2020). What’s wrong with creativity testing? J. Creat. Behav. 54, 20–36. doi: 10.1002/jocb.237

Sternberg, R. J., and Lubart, T. I. (1998). “The concept of creativity: prospects and paradigms” in Handbook of creativity . ed. R. J. Sternberg (Cambridge: Cambridge University Press), 3–15.

Stevens, C. E., and Zabelina, D. L. (2020). Classifying creativity: applying machine learning techniques to divergent thinking EEG data. NeuroImage 219:116990. doi: 10.1016/j.neuroimage.2020.116990

Teplan, M. (2002). Fundamentals of EEG measurement. Available at: https://api.semanticscholar.org/CorpusID:17002960

Torrance, E. P. (1966). Torrance tests of creative thinking (TTCT). APA PsycTests . doi: 10.1037/t05532-000

Ueno, K., Takahashi, T., Takahashi, K., Mizukami, K., Tanaka, Y., and Wada, Y. (2015). Neurophysiological basis of creativity in healthy elderly people: a multiscale entropy approach. Clin. Neurophysiol. 126, 524–531. doi: 10.1016/j.clinph.2014.06.032

Vieira, S. L. D. S., Benedek, M., Gero, J. S., Cascini, G., and Li, S. (2021). Brain activity of industrial designers in constrained and open design: the effect of gender on frequency bands. Proceedings of the Design Society, 1(AUGUST), 571–580. doi: 10.1017/pds.2021.57

Vieira, S., Benedek, M., Gero, J., Li, S., and Cascini, G. (2022a). Brain activity in constrained and open design: the effect of gender on frequency bands. Artif. Intell. Eng. Des. Anal. Manuf. 36:e6. doi: 10.1017/S0890060421000202

Vieira, S., Benedek, M., Gero, J., Li, S., and Cascini, G. (2022b). Design spaces and EEG frequency band power in constrained and open design. Int. J. Des. Creat. Innov. 10, 193–221. doi: 10.1080/21650349.2022.2048697

Vieira, S. L. D. S., Gero, J. S., Delmoral, J., Gattol, V., Fernandes, C., and Fernandes, A. A. (2019). Comparing the design neurocognition of mechanical engineers and architects: a study of the effect of Designer’s domain. Proceedings of the Design Society: International Conference on Engineering Design, 1(1), 1853–1862. doi: 10.1017/dsi.2019.191

Vieira, S., Gero, J. S., Delmoral, J., Gattol, V., Fernandes, C., Parente, M., et al. (2020a). The neurophysiological activations of mechanical engineers and industrial designers while designing and problem-solving. Design Sci. 6:e26. doi: 10.1017/dsj.2020.26

Vieira, S., Gero, J. S., Delmoral, J., Li, S., Cascini, G., and Fernandes, A. (2020b). Brain activity in constrained and open design spaces: an EEG study. The Sixth International Conference on Design Creativity-ICDC2020. doi: 10.35199/ICDC.2020.09

Vieira, S., Gero, J. S., Delmoral, J., Parente, M., Fernandes, A. A., Gattol, V., et al. (2020c). “Industrial designers problem-solving and designing: An EEG study” in Research & Education in design: People & Processes & Products & philosophy . eds. R. Almendra and J. Ferreira 211–220. ( 1st ed. ) Lisbon, Portugal. CRC Press.

Vieira, S., Gero, J., Gattol, V., Delmoral, J., Li, S., Cascini, G., et al. (2020d). The neurophysiological activations of novice and experienced professionals when designing and problem-solving. Proceedings of the Design Society: DESIGN Conference, 1, 1569–1578. doi: 10.1017/dsd.2020.121

Volf, N. V., and Razumnikova, O. M. (1999). Sex differences in EEG coherence during a verbal memory task in normal adults. Int. J. Psychophysiol. 34, 113–122. doi: 10.1016/s0167-8760(99)00067-7

Volf, N. V., and Tarasova, I. V. (2010). The relationships between EEG θ and β oscillations and the level of creativity. Hum. Physiol. 36, 132–138. doi: 10.1134/S0362119710020027

Volf, N. V., Tarasova, I. V., and Razumnikova, O. M. (2010). Gender-related differences in changes in the coherence of cortical biopotentials during image-based creative thought: relationship with action efficacy. Neurosci. Behav. Physiol. 40, 793–799. doi: 10.1007/s11055-010-9328-y

Wallas, G. (1926). The art of thought . London: J. Cape.

Wang, Y., Gu, C., and Lu, J. (2019). Effects of creative personality on EEG alpha oscillation: based on the social and general creativity comparative study. J. Creat. Behav. 53, 246–258. doi: 10.1002/jocb.243

Wang, M., Hao, N., Ku, Y., Grabner, R. H., and Fink, A. (2017). Neural correlates of serial order effect in verbal divergent thinking. Neuropsychologia 99, 92–100. doi: 10.1016/j.neuropsychologia.2017.03.001

Wang, Y.-Y., Weng, T.-H., Tsai, I.-F., Kao, J.-Y., and Chang, Y.-S. (2023). Effects of virtual reality on creativity performance and perceived immersion: a study of brain waves. Br. J. Educ. Technol. 54, 581–602. doi: 10.1111/bjet.13264

Williams, A., Ostwald, M., and Askland, H. (2011). The relationship between creativity and design and its implication for design education. Des. Princ. Pract. 5, 57–71. doi: 10.18848/1833-1874/CGP/v05i01/38017

Xie, X. (2023). The cognitive process of creative design: a perspective of divergent thinking. Think. Skills Creat. 48:101266. doi: 10.1016/j.tsc.2023.101266

Yang, J., Quan, H., and Zeng, Y. (2022). Knowledge: the good, the bad, and the ways for designer creativity. J. Eng. Des. 33, 945–968. doi: 10.1080/09544828.2022.2161300

Yang, J., Yang, L., Quan, H., and Zeng, Y. (2021). Implementation barriers: a TASKS framework. J. Integr. Des. Process. Sci. 25, 134–147. doi: 10.3233/JID-210011

Yin, Y., Zuo, H., and Childs, P. R. N. (2023). An EEG-based method to decode cognitive factors in creative processes. AI EDAM. Available at: https://www.cambridge.org/core/journals/ai-edam/article/an-eegbased-method-to-decode-cognitive-factors-in-creative-processes/FD24164B3D2C4ABA3A57D9710E86EDD4

Yuan, H., Zotev, V., Phillips, R., Drevets, W. C., and Bodurka, J. (2012). Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks. NeuroImage 60, 2062–2072. doi: 10.1016/j.neuroimage.2012.02.031

Zangeneh Soroush, M., Tahvilian, P., Nasirpour, M. H., Maghooli, K., Sadeghniiat-Haghighi, K., Vahid Harandi, S., et al. (2022). EEG artifact removal using sub-space decomposition, nonlinear dynamics, stationary wavelet transform and machine learning algorithms. Front. Physiol. 13:910368. doi: 10.3389/fphys.2022.910368

Zangeneh Soroush, M., Zhao, M., Jia, W., and Zeng, Y. (2023a). Conceptual design exploration: EEG dataset in open-ended loosely controlled design experiments. Mendeley Data . doi: 10.17632/h4rf6wzjcr.1

Zangeneh Soroush, M., Zhao, M., Jia, W., and Zeng, Y. (2023b). Design creativity: EEG dataset in loosely controlled modified TTCT-F creativity experiments. Mendeley Data . doi: 10.17632/24yp3xp58b.1

Zangeneh Soroush, M., Zhao, M., Jia, W., and Zeng, Y. (2024). Loosely controlled experimental EEG datasets for higher-order cognitions in design and creativity tasks. Data Brief 52:109981. doi: 10.1016/j.dib.2023.109981

Zeng, Y. (2001). An axiomatic approach to the modeling of conceptual product design using set theory. Department of Mechanical and Manufacturing Engineering, 218.

Zeng, Y. (2002). Axiomatic theory of design modeling. J. Integr. Des. Process. Sci. 6, 1–28.

Zeng, Y. (2004). Environment-based formulation of design problem. J. Integr. Des. Process. Sci. 8, 45–63.

Zeng, Y. (2015). Environment-based design (EBD): a methodology for transdisciplinary design. J. Integr. Des. Process. Sci. 19, 5–24. doi: 10.3233/jid-2015-0004

Zeng, Y., and Cheng, G. D. (1991). On the logic of design. Des. Stud. 12, 137–141. doi: 10.1016/0142-694X(91)90022-O

Zeng, Y., and Gu, P. (1999). A science-based approach to product design theory part II: formulation of design requirements and products. Robot. Comput. Integr. Manuf. 15, 341–352. doi: 10.1016/S0736-5845(99)00029-0

Zeng, Y., Pardasani, A., Dickinson, J., Li, Z., Antunes, H., Gupta, V., et al. (2004). Mathematical foundation for modeling conceptual design Sketches1. J. Comput. Inf. Sci. Eng. 4, 150–159. doi: 10.1115/1.1683825

Zeng, Y., and Yao, S. (2009). Understanding design activities through computer simulation. Adv. Eng. Inform. 23, 294–308. doi: 10.1016/j.aei.2009.02.001

Zhang, W., Sjoerds, Z., and Hommel, B. (2020). Metacontrol of human creativity: the neurocognitive mechanisms of convergent and divergent thinking. NeuroImage 210:116572. doi: 10.1016/j.neuroimage.2020.116572

Zhao, M., Jia, W., Yang, D., Nguyen, P., Nguyen, T. A., and Zeng, Y. (2020). A tEEG framework for studying designer’s cognitive and affective states. Design Sci. 6:e29. doi: 10.1017/dsj.2020.28

Zhao, M., Yang, D., Liu, S., and Zeng, Y. (2018). Mental stress-performance model in emotional engineering . ed. S. Fukuda. (Cham: Springer). Vol. 6 .

Zhuang, K., Yang, W., Li, Y., Zhang, J., Chen, Q., Meng, J., et al. (2021). Connectome-based evidence for creative thinking as an emergent property of ordinary cognitive operations. NeuroImage 227:117632. doi: 10.1016/j.neuroimage.2020.117632

Keywords: design creativity, creativity, neurocognition, EEG, higher-order cognitive tasks, thematic analysis

Citation: Zangeneh Soroush M and Zeng Y (2024) EEG-based study of design creativity: a review on research design, experiments, and analysis. Front. Behav. Neurosci . 18:1331396. doi: 10.3389/fnbeh.2024.1331396

Received: 01 November 2023; Accepted: 07 May 2024; Published: 01 August 2024.

Reviewed by:

Copyright © 2024 Zangeneh Soroush and Zeng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Yong Zeng, [email protected]

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

NIH Research Festival

September 23 – 25, 2024

Integrating Decentralized Trial Design Methods to Explore Clinical Trial Landscape in Rare Genetic Diseases: A Scoping Review

The clinical trial environment is changing with novel concepts such as decentralized clinical trial (DCTs) designs. The COVID-19 pandemic disrupted clinical studies, hence DCT elements are appropriate for research designs. In place of in-person assessments and on-site monitoring, DCT design elements such as electronic consent and telemedicine can minimize participant burden as opposed to centralized trial designs that limit participation for vulnerable minority populations with chronic and rare diseases. Rare patients are more likely to be geographically separated, hence such designs may increase rare patient and clinical trial collaborations. FDA's draft guidelines about DCTs mention its potential with improving recruitment and retention among underrepresented racial and ethnic groups. This review aims to synthesize the literature in the context of rare genetic disease and whether DCT elements are associated with racial composition of such trials. The goal is to contribute to existing guidance and address gaps in understanding of how DCT designs foster minority participation within the rare genetic disease trial landscape. The Joanna Briggs Institute methodology will be used to conduct the scoping review along with adherence to Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews criteria. Decentralized elements and participant demographics will be extracted from papers of randomized clinical trials conducted within the rare genetic disease landscape between January 2004 and December 2023 and limited to English only. This project will suggest novel approaches toward the literature and insights related to DCT elements and their participant demographics among the rare genetic disease landscape.

Scientific Focus Area : Clinical Research

This page was last updated on Tuesday, August 6, 2024

  • ENVD Honors Thesis

Ask A Librarian

Make an appointment

Chat, Call, Text

Email: [email protected]

Engineering, Science and Design Librarian

Profile Photo

Request an ENVD Research Consultation

Interlibrary loan.

                interlibrary loan symbol

When we do not have a source, you may use our  Interlibrary Loan services  to request it! Place your request using  ILLiad ,  and we do our best to get the source for you from another library. Interlibrary Loan is free for registered faculty, staff, and students and other authorized users at the Boulder Campus.

Find Research Articles

On this page of the guide, you will explore a tool and strategies to efficiently and effectively find research articles.

Additional Databases for Locating Research Articles

  • Avery Index to Architectural Periodicals (ProQuest) Comprehensive database of architecture articles.
  • GreenFILE (EBSCO) Interdisciplinary resources on human impact to environment.
  • BuildingGreen Suite Articles focusing on healthy and sustainable design processes, construction strategies, materials and products, building science, case studies, and certifications such as LEED and WELL.
  • Social Sciences Full Text (EBSCO) Scholarly articles in the fields of addition studies, anthropology, criminology, economics, family studies, gerontology, ethnic studies, political science, psychology, social work, and urban studies. Includes the following collections: Social Sciences Full Text (H.W. Wilson), Humanities & Social Sciences Index Retrospective: 1907-1984 (H.W. Wilson)
  • PsycINFO (ProQuest) Useful for human computer interaction. Covers psychology and psychological aspects of medicine, psychiatry, anthropology, business, law, and similar disciplines.

Search Tips

Research is iterative.

You won't get it done all at once.

Sometimes you need to do some research to figure out what to research.

Use multiple keywords, search tools, and search strategies

Use Google AND the Library

OneSearch and other databases are search tools and collections of information paid for by University Libraries. These search tools will find information that is not available on Google. They also have search features, filters, and sorting more advanced than what is provided by Google.

Brainstorm Lots of Keywords

You may need to brainstorm lots of terms and phrases related to your research. Include multiple aspects of your research question, synonyms and broader concepts.

  • oil pipelines
  • pipeline environment* impact, "oil spill" environment* impact, climate change
  • human health, wildlife health
  • drug trafficking
  • sex trafficking, Missing and Murdered Indigenous Women (MMIW)
  • Ojibwe rights
  • Indigenous activism, "water protectors," "Stop Line 3", "water is life," #noDAPL
  • job creation
  • tax revenue
  • energy production

Quotes and asterisks

Quotes will search a phrase instead of separate keywords.

  • I.E. "environmental justice"

Asterisk is a wildcard, and it will search variations in word endings

  • environment
  • environments
  • environmental
  • environmentally
  • environmentalist
  • environmentalists
  • environmentalism

Word Meanings

Consider multiple words that mean the same thing or a similar concept

  • I.E. car, automobile, motor vehicle

Consider words that mean multiple things 

  • I.E. data logging / forest logging
  • I.E. drug trafficking / sex trafficking

Consider spelling out acronyms, or searching for the phrase and the acronym

  • AI OR "artificial intelligence"

AND indicates that both terms or phrases have to be in your search results

  • pipeline AND "climate change"

OR indicates the either of your search terms could be in the results, and is good for synonyms or related terms

  • pipeline AND ("sex trafficking" OR "Missing and Murdered Indigenous Women" OR MMIW)

NOT eliminates results with a certain term

  • pipeline AND ("sex trafficking" OR "Missing and Murdered Indigenous Women" OR MMIW) NOT drug

Try Other Kinds of Searching

Keyword searching isn't your only option:

  • Follow citations between sources - look at references and cited by
  • Find other sources by an author
  • Browse a specific publication or broad set of results

Zotero for Citation Management

Zotero is a free and open source citation management application. Citation management tools allow you to retrieve, store, organize, take notes on, and generate citations from all your information sources like articles, books, videos, standards, and more. It is collaborative, so you can share your sources with the people you are working on your research with. Zotero will generate citations for your sources.

  • University of Colorado Boulder Libraries
  • Research Guides
  • .Site: Research By Course and Topic
  • Last Updated: Aug 9, 2024 2:41 PM
  • URL: https://libguides.colorado.edu/ENVDhonors
  • © Regents of the University of Colorado

Organizing Your Social Sciences Research Paper: Types of Research Designs

  • Purpose of Guide
  • Writing a Research Proposal
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • The Research Problem/Question
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • The C.A.R.S. Model
  • Background Information
  • Theoretical Framework
  • Citation Tracking
  • Evaluating Sources
  • Reading Research Effectively
  • Primary Sources
  • Secondary Sources
  • What Is Scholarly vs. Popular?
  • Is it Peer-Reviewed?
  • Qualitative Methods
  • Quantitative Methods
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism [linked guide]
  • Annotated Bibliography
  • Grading Someone Else's Paper

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy that you choose to integrate the different components of the study in a coherent and logical way, thereby, ensuring you will effectively address the research problem; it constitutes the blueprint for the collection, measurement, and analysis of data. Note that your research problem determines the type of design you should use, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base . 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations far too early, before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing research designs in your paper can vary considerably, but any well-developed design will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the data which will be necessary for an adequate testing of the hypotheses and explain how such data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction and varies in length depending on the type of design you are using. However, you can get a sense of what to do by reviewing the literature of studies that have utilized the same research design. This can provide an outline to follow for your own paper.

NOTE : Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Video content

Videos in Business and Management , Criminology and Criminal Justice , Education , and Media, Communication and Cultural Studies specifically created for use in higher education.

A literature review tool that highlights the most influential works in Business & Management, Education, Politics & International Relations, Psychology and Sociology. Does not contain full text of the cited works. Dates vary.

Encyclopedias, handbooks, ebooks, and videos published by Sage and CQ Press. 2000 to present

Causal Design

Definition and Purpose

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.

What do these studies tell you ?

  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.

What these studies don't tell you ?

  • Not all relationships are casual! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation ; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base . 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, r ather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101 . Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study . Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design, Application, Strengths and Weaknesses of Cross-Sectional Studies . Healthknowledge, 2009. Cross-Sectional Study . Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies . Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design , September 26, 2008. Explorable.com website.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs . School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research . Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design . Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research . Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research . Wikipedia.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study . Wikipedia.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research . Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

  • << Previous: Writing a Research Proposal
  • Next: Design Flaws to Avoid >>
  • Last Updated: Sep 8, 2023 12:19 PM
  • URL: https://guides.library.txstate.edu/socialscienceresearch

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Guide to Experimental Design | Overview, Steps, & Examples

Guide to Experimental Design | Overview, 5 steps & Examples

Published on December 3, 2019 by Rebecca Bevans . Revised on June 21, 2023.

Experiments are used to study causal relationships . You manipulate one or more independent variables and measure their effect on one or more dependent variables.

Experimental design create a set of procedures to systematically test a hypothesis . A good experimental design requires a strong understanding of the system you are studying.

There are five key steps in designing an experiment:

  • Consider your variables and how they are related
  • Write a specific, testable hypothesis
  • Design experimental treatments to manipulate your independent variable
  • Assign subjects to groups, either between-subjects or within-subjects
  • Plan how you will measure your dependent variable

For valid conclusions, you also need to select a representative sample and control any  extraneous variables that might influence your results. If random assignment of participants to control and treatment groups is impossible, unethical, or highly difficult, consider an observational study instead. This minimizes several types of research bias, particularly sampling bias , survivorship bias , and attrition bias as time passes.

Table of contents

Step 1: define your variables, step 2: write your hypothesis, step 3: design your experimental treatments, step 4: assign your subjects to treatment groups, step 5: measure your dependent variable, other interesting articles, frequently asked questions about experiments.

You should begin with a specific research question . We will work with two research question examples, one from health sciences and one from ecology:

To translate your research question into an experimental hypothesis, you need to define the main variables and make predictions about how they are related.

Start by simply listing the independent and dependent variables .

Research question Independent variable Dependent variable
Phone use and sleep Minutes of phone use before sleep Hours of sleep per night
Temperature and soil respiration Air temperature just above the soil surface CO2 respired from soil

Then you need to think about possible extraneous and confounding variables and consider how you might control  them in your experiment.

Extraneous variable How to control
Phone use and sleep in sleep patterns among individuals. measure the average difference between sleep with phone use and sleep without phone use rather than the average amount of sleep per treatment group.
Temperature and soil respiration also affects respiration, and moisture can decrease with increasing temperature. monitor soil moisture and add water to make sure that soil moisture is consistent across all treatment plots.

Finally, you can put these variables together into a diagram. Use arrows to show the possible relationships between variables and include signs to show the expected direction of the relationships.

Diagram of the relationship between variables in a sleep experiment

Here we predict that increasing temperature will increase soil respiration and decrease soil moisture, while decreasing soil moisture will lead to decreased soil respiration.

Prevent plagiarism. Run a free check.

Now that you have a strong conceptual understanding of the system you are studying, you should be able to write a specific, testable hypothesis that addresses your research question.

Null hypothesis (H ) Alternate hypothesis (H )
Phone use and sleep Phone use before sleep does not correlate with the amount of sleep a person gets. Increasing phone use before sleep leads to a decrease in sleep.
Temperature and soil respiration Air temperature does not correlate with soil respiration. Increased air temperature leads to increased soil respiration.

The next steps will describe how to design a controlled experiment . In a controlled experiment, you must be able to:

  • Systematically and precisely manipulate the independent variable(s).
  • Precisely measure the dependent variable(s).
  • Control any potential confounding variables.

If your study system doesn’t match these criteria, there are other types of research you can use to answer your research question.

How you manipulate the independent variable can affect the experiment’s external validity – that is, the extent to which the results can be generalized and applied to the broader world.

First, you may need to decide how widely to vary your independent variable.

  • just slightly above the natural range for your study region.
  • over a wider range of temperatures to mimic future warming.
  • over an extreme range that is beyond any possible natural variation.

Second, you may need to choose how finely to vary your independent variable. Sometimes this choice is made for you by your experimental system, but often you will need to decide, and this will affect how much you can infer from your results.

  • a categorical variable : either as binary (yes/no) or as levels of a factor (no phone use, low phone use, high phone use).
  • a continuous variable (minutes of phone use measured every night).

How you apply your experimental treatments to your test subjects is crucial for obtaining valid and reliable results.

First, you need to consider the study size : how many individuals will be included in the experiment? In general, the more subjects you include, the greater your experiment’s statistical power , which determines how much confidence you can have in your results.

Then you need to randomly assign your subjects to treatment groups . Each group receives a different level of the treatment (e.g. no phone use, low phone use, high phone use).

You should also include a control group , which receives no treatment. The control group tells us what would have happened to your test subjects without any experimental intervention.

When assigning your subjects to groups, there are two main choices you need to make:

  • A completely randomized design vs a randomized block design .
  • A between-subjects design vs a within-subjects design .

Randomization

An experiment can be completely randomized or randomized within blocks (aka strata):

  • In a completely randomized design , every subject is assigned to a treatment group at random.
  • In a randomized block design (aka stratified random design), subjects are first grouped according to a characteristic they share, and then randomly assigned to treatments within those groups.
Completely randomized design Randomized block design
Phone use and sleep Subjects are all randomly assigned a level of phone use using a random number generator. Subjects are first grouped by age, and then phone use treatments are randomly assigned within these groups.
Temperature and soil respiration Warming treatments are assigned to soil plots at random by using a number generator to generate map coordinates within the study area. Soils are first grouped by average rainfall, and then treatment plots are randomly assigned within these groups.

Sometimes randomization isn’t practical or ethical , so researchers create partially-random or even non-random designs. An experimental design where treatments aren’t randomly assigned is called a quasi-experimental design .

Between-subjects vs. within-subjects

In a between-subjects design (also known as an independent measures design or classic ANOVA design), individuals receive only one of the possible levels of an experimental treatment.

In medical or social research, you might also use matched pairs within your between-subjects design to make sure that each treatment group contains the same variety of test subjects in the same proportions.

In a within-subjects design (also known as a repeated measures design), every individual receives each of the experimental treatments consecutively, and their responses to each treatment are measured.

Within-subjects or repeated measures can also refer to an experimental design where an effect emerges over time, and individual responses are measured over time in order to measure this effect as it emerges.

Counterbalancing (randomizing or reversing the order of treatments among subjects) is often used in within-subjects designs to ensure that the order of treatment application doesn’t influence the results of the experiment.

Between-subjects (independent measures) design Within-subjects (repeated measures) design
Phone use and sleep Subjects are randomly assigned a level of phone use (none, low, or high) and follow that level of phone use throughout the experiment. Subjects are assigned consecutively to zero, low, and high levels of phone use throughout the experiment, and the order in which they follow these treatments is randomized.
Temperature and soil respiration Warming treatments are assigned to soil plots at random and the soils are kept at this temperature throughout the experiment. Every plot receives each warming treatment (1, 3, 5, 8, and 10C above ambient temperatures) consecutively over the course of the experiment, and the order in which they receive these treatments is randomized.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

research designs

Finally, you need to decide how you’ll collect data on your dependent variable outcomes. You should aim for reliable and valid measurements that minimize research bias or error.

Some variables, like temperature, can be objectively measured with scientific instruments. Others may need to be operationalized to turn them into measurable observations.

  • Ask participants to record what time they go to sleep and get up each day.
  • Ask participants to wear a sleep tracker.

How precisely you measure your dependent variable also affects the kinds of statistical analysis you can use on your data.

Experiments are always context-dependent, and a good experimental design will take into account all of the unique considerations of your study system to produce information that is both valid and relevant to your research question.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 21). Guide to Experimental Design | Overview, 5 steps & Examples. Scribbr. Retrieved August 9, 2024, from https://www.scribbr.com/methodology/experimental-design/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, random assignment in experiments | introduction & examples, quasi-experimental design | definition, types & examples, how to write a lab report, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Dr. Felix Kabo presents award-winning research at the 2024 #EDRA55 conference

August 6, 2024

Social Sharing

  • Copied to clipboard!

Dr. Felix Kabo, director of research at CannonDesign, recently presented his findings on network-based site selection for collaboration at the #EDRA55 conference in Portland, Oregon.

The conference, organized by the Environmental Design Research Association (EDRA), brought together experts to explore the latest in environmental design and research. The theme for the conference was “Human Centric Environments: Promoting Design that Sustains Human Prosperity, Well-being, and the Global Environment at All Scales.”  

EDRA also recently recognized this body of research with a Certificate of Research Excellence (CORE) award for its research contributions — a first in CannonDesign's history.

The paper, titled "Getting It Right: a Network-Based Approach to Site Selection for Collaboration," shares research findings from the ongoing demonstration project at the Michigan State University (MSU) Plant and Environmental Science Building (PESB). It demonstrates how network analysis can be used to examine site selection for collaboration — a complex and multicriteria process often overlooked in new scientific facility design. The paper compares two potential PESB sites and shows how site A is better configured to foster connections, encounters, and legibility within the research team that is slated to move into the PESB. 

Additionally, Dr. Kabo accepted the EDRA CORE award at the conference, which recognized the paper's contribution to advancing the field of environmental design research and its relevance to the practice of design. The award also acknowledges the collaboration between CannonDesign and MSU, which exemplifies the integration of research and practice. 

Explore more

Cannondesign receives research grant from ccirf to study military surgical team performance.

CannonDesign has been awarded a grant from the Competency & Credentialing Institute Research Foundation (CCIRF) to study military surgical team performance.

CannonDesign receives award from Environmental Design Research Association

We are thrilled to share that a recent study conducted by our Director of Research, Dr. Felix Kabo, has been awarded a Certificate of Research Excellence from the Environmental Design Research Association (EDRA).

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Grad Med Educ
  • v.8(1); 2016 Feb

Research Design Considerations

Associated data.

Editor's Note: The online version of this article contains references and resources for further reading and the authors' professional information.

The Challenge

“I'd really like to do a survey” or “Let's conduct some interviews” might sound like reasonable starting points for a research project. However, it is crucial that researchers examine their philosophical assumptions and those underpinning their research questions before selecting data collection methods. Philosophical assumptions relate to ontology, or the nature of reality, and epistemology, the nature of knowledge. Alignment of the researcher's worldview (ie, ontology and epistemology) with methodology (research approach) and methods (specific data collection, analysis, and interpretation tools) is key to quality research design. This Rip Out will explain philosophical differences between quantitative and qualitative research designs and how they affect definitions of rigorous research.

What Is Known

Worldviews offer different beliefs about what can be known and how it can be known, thereby shaping the types of research questions that are asked, the research approach taken, and ultimately, the data collection and analytic methods used. Ontology refers to the question of “What can we know?” Ontological viewpoints can be placed on a continuum: researchers at one end believe that an observable reality exists independent of our knowledge of it, while at the other end, researchers believe that reality is subjective and constructed, with no universal “truth” to be discovered. 1,2 Epistemology refers to the question of “How can we know?” 3 Epistemological positions also can be placed on a continuum, influenced by the researcher's ontological viewpoint. For example, the positivist worldview is based on belief in an objective reality and a truth to be discovered. Therefore, knowledge is produced through objective measurements and the quantitative relationships between variables. 4 This might include measuring the difference in examination scores between groups of learners who have been exposed to 2 different teaching formats, in order to determine whether a particular teaching format influenced the resulting examination scores.

In contrast, subjectivists (also referred to as constructionists or constructivists ) are at the opposite end of the continuum, and believe there are multiple or situated realities that are constructed in particular social, cultural, institutional, and historical contexts. According to this view, knowledge is created through the exploration of beliefs, perceptions, and experiences of the world, often captured and interpreted through observation, interviews, and focus groups. A researcher with this worldview might be interested in exploring the perceptions of students exposed to the 2 teaching formats, to better understand how learning is experienced in the 2 settings. It is crucial that there is alignment between ontology (what can we know?), epistemology (how can we know it?), methodology (what approach should be used?), and data collection and analysis methods (what specific tools should be used?). 5

Key Differences in Qualitative and Quantitative Approaches

Use of theory.

Quantitative approaches generally test theory, while qualitative approaches either use theory as a lens that shapes the research design or generate new theories inductively from their data. 4

Use of Logic

Quantitative approaches often involve deductive logic, starting off with general arguments of theories and concepts that result in data points. 4 Qualitative approaches often use inductive logic or both inductive and deductive logic, start with the data, and build up to a description, theory, or explanatory model. 4

Purpose of Results

Quantitative approaches attempt to generalize findings; qualitative approaches pay specific attention to particular individuals, groups, contexts, or cultures to provide a deep understanding of a phenomenon in local context. 4

Establishing Rigor

Quantitative researchers must collect evidence of validity and reliability. Some qualitative researchers also aim to establish validity and reliability. They seek to be as objective as possible through techniques, including cross-checking and cross-validating sources during observations. 6 Other qualitative researchers have developed specific frameworks, terminology, and criteria on which qualitative research should be evaluated. 6,7 For example, the use of credibility, transferability, dependability, and confirmability as criteria for rigor seek to establish the accuracy, trustworthiness, and believability of the research, rather than its validity and reliability. 8 Thus, the framework of rigor you choose will depend on your chosen methodology (see “Choosing a Qualitative Research Approach” Rip Out).

View of Objectivity

A goal of quantitative research is to maintain objectivity, in other words, to reduce the influence of the researcher on data collection as much as possible. Some qualitative researchers also attempt to reduce their own influence on the research. However, others suggest that these approaches subscribe to positivistic ideals, which are inappropriate for qualitative research, 6,9,10 as researchers should not seek to eliminate the effects of their influence on the study but to understand them through reflexivity . 11 Reflexivity is an acknowledgement that, to make sense of the social world, a researcher will inevitably draw on his or her own values, norms, and concepts, which prevent a totally objective view of the social world. 12

Sampling Strategies

Quantitative research favors using large, randomly generated samples, especially if the intent of the research is to generalize to other populations. 6 Instead, qualitative research often focuses on participants who are likely to provide rich information about the study questions, known as purposive sampling . 6

How You Can Start TODAY

  • Consider how you can best address your research problem and what philosophical assumptions you are making.
  • Consider your ontological and epistemological stance by asking yourself: What can I know about the phenomenon of interest? How can I know what I want to know? W hat approach should I use and why? Answers to these questions might be relatively fixed but should be flexible enough to guide methodological choices that best suit different research problems under study. 5
  • Select an appropriate sampling strategy. Purposive sampling is often used in qualitative research, with a goal of finding information-rich cases, not to generalize. 6
  • Be reflexive: Examine the ways in which your history, education, experiences, and worldviews have affected the research questions you have selected and your data collection methods, analyses, and writing. 13

How You Can Start TODAY—An Example

Let's assume that you want to know about resident learning on a particular clinical rotation. Your initial thought is to use end-of-rotation assessment scores as a way to measure learning. However, these assessments cannot tell you how or why residents are learning. While you cannot know for sure that residents are learning, consider what you can know—resident perceptions of their learning experiences on this rotation.

Next, you consider how to go about collecting this data—you could ask residents about their experiences in interviews or watch them in their natural settings. Since you would like to develop a theory of resident learning in clinical settings, you decide to use grounded theory as a methodology, as you believe asking residents about their experience using in-depth interviews is the best way for you to elicit the information you are seeking. You should also do more research on grounded theory by consulting related resources, and you will discover that grounded theory requires theoretical sampling. 14,15 You also decide to use the end-of-rotation assessment scores to help select your sample.

Since you want to know how and why students learn, you decide to sample extreme cases of students who have performed well and poorly on the end-of-rotation assessments. You think about how your background influences your standpoint about the research question: Were you ever a resident? How did you score on your end-of-rotation assessments? Did you feel this was an accurate representation of your learning? Are you a clinical faculty member now? Did your rotations prepare you well for this role? How does your history shape the way you view the problem? Seek to challenge, elaborate, and refine your assumptions throughout the research.

As you proceed with the interviews, they trigger further questions, and you then decide to conduct interviews with faculty members to get a more complete picture of the process of learning in this particular resident clinical rotation.

What You Can Do LONG TERM

  • Familiarize yourself with published guides on conducting and evaluating qualitative research. 5,16–18 There is no one-size-fits-all formula for qualitative research. However, there are techniques for conducting your research in a way that stays true to the traditions of qualitative research.
  • Consider the reporting style of your results. For some research approaches, it would be inappropriate to quantify results through frequency or numerical counts. 19 In this case, instead of saying “5 respondents reported X,” you might consider “respondents who reported X described Y.”
  • Review the conventions and writing styles of articles published with a methodological approach similar to the one you are considering. If appropriate, consider using a reflexive writing style to demonstrate understanding of your own role in shaping the research. 6

Supplementary Material

ufo appearing from whirlpool, illustration

Are Underwater UFOs an Imminent Threat? The U.S. Government Sure Thinks So—And Here’s the Proof

Legislators went so far as to formally change the way they refer to UFO sightings over and under bodies of water.

Claims of such Unidentified Submerged Objects , or USOs, have intrigued UFO enthusiasts for decades. Based on eyewitness reports, some of the objects have even seemed to traverse the boundary between air and water, traveling at shocking speeds of hundreds of miles per hour.

A small group of UFO devotees, including government security and military officials, have believed for years that the U.S. should be seriously looking into potentially threatening anomalies in bodies of water, as well on land and in the air. In a bipartisan effort, that group ultimately helped convince the U.S. government to legislate a name change for the term it uses to refer to UFOs today—from “Unidentified Aerial Phenomena” to “Unidentified Anomalous Phenomena,” reflecting lobbyists’ concerns about underwater threats.

The slight name change may appear to be a simple case of semantics, but it proves the Pentagon sees underwater UFOs as a legitimate concern.

The Department of Defense has made it clear that it doesn’t assume UAPs necessarily indicate extraterrestrial activity. In fact, these phenomena have so far proven to have mundane explanations. These include human-made technology like drones and weather balloons, Starlink satellites , or atmospheric events such as lenticular cloud formations.

The Government’s Name Game

A shift in how the government handled UFO reports first came to a head in the 2010s. Pressure from legislators, as well as public interest in the government’s disclosure of classified UFO reports , started changing defense culture. For instance, after decades of shielding information on sightings from the public, the military now encourages service members to report unexplained phenomena. Today, Navy pilots report odd incidents in the interest of national defense, such as the 2019 sighting by a Navy warship that seemed to link UFOs and USOs.

In 2021, the Department of Defense created the Unidentified Aerial Phenomena Task Force, a program within the U.S. Office of Naval Intelligence meant to “standardize collection and reporting” of UFO sightings. Aiming to integrate knowledge and efforts across the Pentagon and other government agencies, the Office of the Secretary of Defense established the All-Domain Anomaly Resolution Office (AARO) soon afterward. By law, every federal agency must “review, identify, and organize each Unidentified Anomalous Phenomena (UAP) record in its custody for disclosure to the public and transmission to the National Archives.”

Prior to the 2022 National Defense Authorization Act—which authorizes funding levels for the U.S. military and other defense priorities—UAP originally stood for only aerial objects. Now, it includes underwater and trans-medium phenomena. It’s why AARO was so named, to investigate “All-domain” anomalies. But, before the legal name change, AARO was already considering objects over and in the water—so it was a little confusing to keep calling them all “aerial.”

In 2022, the terminology to describe unexplained incidents officially switched from “aerial” to “anomalous.” Congress enacted the name change that December. At the time, Ronald Moultrie, the Under Secretary of Defense for Intelligence and Security told a roundtable of AARO:

“You may have caught that I just said unidentified anomalous phenomena, whereas in the past the department has used the term unidentified aerial phenomena. This new terminology expands the scope of UAP to include submerged and trans-medium objects. Unidentified phenomena in all domains, whether in the air, ground, sea or space, pose potential threats to personnel security and operations security, and they require our urgent attention.”

This legal change traces back to pressures from UFO enthusiasts who believed submerged and trans-medium objects, which seem to fly between air and sea, should be included in the government’s potential threat evaluation. These proponents include U.S. Navy Rear Admiral Tim Gallaudet, Ph.D., who published a report on the potential maritime threat of USOs, and Luis Alizondo , who once ran the government’s secret Pentagon unit, the 2007–12 Advanced Aerospace Threat Identification Program. A dearth of data about USOs and UAPs is “unsettling,” because they “jeopardize US maritime security, which is already weakened by our relative ignorance about the global ocean,” Rear Admiral Gallaudet wrote in his report. In addition, this is an opportunity to expand maritime science and meet the security and scientific challenges of the future, he added.

The Hunt For Solid Evidence

Yet, evidence of submerged objects is murky at best, says UAP investigator Mick West. There is “vastly less evidence than for flying objects,” he explains in an email. “You can’t see very far underwater, so there’s no video or photos. There are only stories about anomalous sonar returns and occasional sightings that might as well be of sea monsters.”

The Puerto Rico “Aguadilla” incident of 2013 also influenced USO and trans-medium enthusiasts, West says. However, they base their claim largely on one video of the incident, which when analyzed turns out to have “a perfectly reasonable explanation of two wedding lanterns and parallax illusions,” West says.

Based on the angle of the camera, positioned on a moving airplane, and consequently its changing line of sight on the flying objects, the viewer sees the objects streaking rapidly over the ocean, apparently diving in, and then emerging again. West’s analysis confirms a theory first proposed by Rubén Lianza, the head of the Argentinian Air Force’s UAP investigation committee.

The objects were wedding lanterns that originated at a nearby hotel and floated on the wind. Lianza confirmed the hotel typically released lanterns that were consistent with the video. The thermal camera (which reads heat) made it appear that the objects merged with the ocean because when the lantern’s flames were hidden, they were about the same temperature as the water they floated over. At the same time, the lanterns seemed to emerge from the water when the flame was visible again.

New trans-medium and submerged UAP reports could crop up in the future. The government will only be able to take reports of strange underwater lights or objects flying out of the water seriously, says West, if the sightings come with enough solid evidence to follow up with a solid analysis.

Headshot of Manasee Wagh

Before joining Popular Mechanics , Manasee Wagh worked as a newspaper reporter, a science journalist, a tech writer, and a computer engineer. She’s always looking for ways to combine the three greatest joys in her life: science, travel, and food.

preview for Popular Mechanics All Sections

.css-cuqpxl:before{padding-right:0.3125rem;content:'//';display:inline;} Pop Mech Pro: Science .css-xtujxj:before{padding-left:0.3125rem;content:'//';display:inline;}

cahokia mounds state historic site

This Laser Could Unlock Interstellar Travel

stylized portrait of mick west

UFO Sightings are Spiking. This Man Knows Why.

conceptual image of person with semitransparent head revealing amanita mushrooms

Magic Mushrooms May Have Shaped Our Consciousness

a large tunnel with a ladder

How We'll Discern the Origins of the Universe

people pulling a frozen coffin out of the back of a truck

He Was Frozen in a Shed for 30 Years. Can He Rise?

futuristic digital illustration glowing spheres in waves the concept of gravitational waves

Why Everything We Know About Gravity May Be Wrong

blood transfusion bag

Can Young Blood Transfusions Really Reverse Aging?

a planet with stars and a galaxy

Human Consciousness Is an Illusion, Scientists Say

cyber eye

The CIA’s Plan to Deploy an Army of Super Spies

coffin on stage with red flowers on top and dramatic red curtains in the background

She Was Pronounced Dead—Then Found Gasping for Air

polygonal brain shape with glowing lines and dots

Every Single Cell in Your Body Could Be Conscious

COMMENTS

  1. What Is a Research Design

    Learn how to design a research strategy for answering your research question using empirical data. Find out how to choose between qualitative and quantitative approaches, sampling methods, data collection and analysis methods, and more.

  2. Research Design

    Learn what research design is and how to choose the best type of research design for your study. Find out the structure, format, and steps of writing a research design, and see an example of a quasi-experimental design.

  3. Types of Research Designs

    Before beginning your paper, you need to decide how you plan to design the study.. The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection ...

  4. What Is Research Design? 8 Types + Examples

    Learn the basics of research design for quantitative and qualitative studies, with practical examples and tips. Find out how to choose the best design for your research aims, objectives and questions.

  5. What is a Research Design? Definition, Types, Methods and Examples

    Learn what research design is and how it guides the process of conducting research. Explore 10 types of research design and 16 methods with examples and key elements.

  6. What is Research Design? Types, Elements and Examples

    Learn what research design is and how to choose the best type for your study. Explore the characteristics, elements and examples of qualitative and quantitative research design.

  7. Research Design: What it is, Elements & Types

    Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success. Creating a research topic explains the type of research (experimental,survey research,correlational ...

  8. Research Design

    Learn how to design a research strategy for answering your research question using empirical data. Explore different types of qualitative and quantitative research designs, sampling methods, data collection and analysis strategies.

  9. Understanding Research Study Designs

    Ranganathan P. Understanding Research Study Designs. Indian J Crit Care Med 2019;23 (Suppl 4):S305-S307. Keywords: Clinical trials as topic, Observational studies as topic, Research designs. We use a variety of research study designs in biomedical research. In this article, the main features of each of these designs are summarized. Go to:

  10. Types of Research Designs Compared

    Learn how to choose the right type of research design for your project based on the research aims, data, sampling, timescale, and location. Compare different types of research with examples and explanations.

  11. Clinical research study designs: The essentials

    Introduction. In clinical research, our aim is to design a study, which would be able to derive a valid and meaningful scientific conclusion using appropriate statistical methods that can be translated to the "real world" setting. 1 Before choosing a study design, one must establish aims and objectives of the study, and choose an appropriate target population that is most representative of ...

  12. What is Research Design? Characteristics, Types, Process, & Examples

    Research design is the structure of research methods and techniques selected to conduct a study. It refines the methods suited to the subject and ensures a successful setup. Defining a research topic clarifies the type of research (experimental, survey research, correlational, semi-experimental, review) and its sub-type (experimental design ...

  13. Study designs: Part 1

    Research study design is a framework, or the set of methods and procedures used to collect and analyze data on variables specified in a particular research problem. Research study designs are of many types, each with its advantages and limitations. The type of study design used to answer a particular research question is determined by the ...

  14. Research Design: What is Research Design, Types, Methods, and Examples

    Learn what research design is and how to choose the right one for your study. Explore the different types of research design, such as quantitative, qualitative, experimental, and descriptive, and see examples and tips.

  15. The Four Types of Research Design

    Research design involves choosing the right methodology, selecting the most appropriate data collection methods, and devising a plan (or framework) for analyzing the data. In short, a good research design helps us to structure our research. Marketers use different types of research design when conducting research.

  16. Research Methods Guide: Research Design & Method

    Research design is a plan to answer your research question. A research method is a strategy used to implement that plan. Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively.

  17. 5 Types of Research Design

    Learn what research design is, why it is important, and how to choose the right type for your study. Explore the main elements, characteristics, and categories of research design, such as quantitative, qualitative, experimental, and descriptive.

  18. Types of Research Designs

    The research design refers to the overall strategy that you choose to integrate the different components of the study in a coherent and logical way, thereby, ensuring you will effectively address the research problem; it constitutes the blueprint for the collection, measurement, and analysis of data.

  19. Research Methods

    Learn how to choose and apply research methods for collecting and analyzing data. Compare qualitative and quantitative, primary and secondary, descriptive and experimental methods with examples and pros and cons.

  20. EEG-based study of design creativity: a review on research design

    The research in design and design creativity is not limited to frequency-based analyses. Nguyen et al. (2019) introduced Microstate analysis to EEG-based design studies. Using the microstate analysis, Jia and Zeng investigated EEG characteristics in design creativity experiment ...

  21. Integrating Decentralized Trial Design Methods to Explore Clinical

    The COVID-19 pandemic disrupted clinical studies, hence DCT elements are appropriate for research designs. In place of in-person assessments and on-site monitoring, DCT design elements such as electronic consent and telemedicine can minimize participant burden as opposed to centralized trial designs that limit participation for vulnerable ...

  22. Home

    For research support using the API, please contact the Center for Research Data & Digital Scholarship. Web of Science Transcript transcript of Web of Science Research Strategies video. ... Articles focusing on healthy and sustainable design processes, construction strategies, materials and products, building science, case studies, and ...

  23. PDF Design and Finite Element Analysis of Patient-Specific Total

    tial aspect in the design and manufacture of a successful prosthetic device. Some of the important characteristics of materials used to manufacture the TMJ prostheses from are biocompatibility, mechanical strength, low wear-rate, and harmless wear particles. Ad-vancement in materials research has led to materials [22] such as medical grade pure

  24. Types of Research Designs

    The research design refers to the overall strategy that you choose to integrate the different components of the study in a coherent and logical way, thereby, ensuring you will effectively address the research problem; it constitutes the blueprint for the collection, measurement, and analysis of data. ...

  25. Guide to Experimental Design

    Learn how to design an experiment to test a causal hypothesis. Follow five steps: define variables, write hypothesis, design treatments, assign subjects, measure dependent variable.

  26. CannonDesign receives prestigious EDRA award for research

    The conference, organized by the Environmental Design Research Association (EDRA), brought together experts to explore the latest in environmental design and research. The theme for the conference was "Human Centric Environments: Promoting Design that Sustains Human Prosperity, Well-being, and the Global Environment at All Scales."

  27. Research Design Considerations

    Purposive sampling is often used in qualitative research, with a goal of finding information-rich cases, not to generalize. 6. Be reflexive: Examine the ways in which your history, education, experiences, and worldviews have affected the research questions you have selected and your data collection methods, analyses, and writing. 13. Go to:

  28. PDF The Artist-Developer: A Case Study of Impact through Art-Centered

    Houston, Texas. The research was conducted with the support of the Joint Center for Housing Studies. The dissertation examined three prominent African American artists who have used arts-based real ... design, and artistic actions that led to the creation of these projects and socialthe benefits that followed. These benefits include social ...

  29. SEC.gov

    The Securities and Exchange Commission today announced settled fraud charges against Ideanomics, Inc., formerly known as Seven Stars Cloud Group, Inc., and its former Chairman and CEO, Zheng (Bruno) Wu, for misleading the public about the company's financial performance between 2017 and 2019.

  30. The U.S. Government Is Taking Underwater UFO Sightings Seriously

    In 1992, "multiple witnesses" in California reported that more than 200 disk-shaped objects soundlessly exited Santa Monica Bay waters, hovered for a moment, and then sped away into the sky ...