EDUCBA

Essay on Solar Energy

Kunika Khuble

Power of the Sun

Solar power is leading the global shift towards sustainable energy by harnessing the sun’s inexhaustible energy. Its significance lies in its renewable nature and its potential to revolutionize our energy landscape. From ancient civilizations utilizing sunlight for warmth to cutting-edge photovoltaic technologies, this essay delves into the evolution of solar energy. By exploring its historical roots, technological advancements, environmental benefits, and economic implications, we aim to elucidate solar energy’s critical role in shaping a sustainable future.

Essay on Solar Energy

Evolution of solar energy

The evolution of solar energy spans millennia, from ancient civilizations exploiting the sun’s warmth to modern technological advancements harnessing its power for electricity generation.

Watch our Demo Courses and Videos

Valuation, Hadoop, Excel, Mobile Apps, Web Development & many more.

  • Ancient Utilization:

The utilization of solar energy traces back to ancient civilizations. Egyptians, Greeks, and Romans designed their buildings to capture the sun’s warmth during winter, showcasing an early understanding of passive solar design. Similarly, ancient Chinese, Indian, and Persian societies used solar architecture to heat water.

  • Discovery of Photovoltaic Effect:

The foundation for contemporary solar technology was laid in the 19th century with the discovery of the photovoltaic effect. French physicist Alexandre Edmond Becquerel noted the creation of an electric current when specific materials were exposed to light in 1839. This phenomenon, known as the photovoltaic effect, laid the groundwork for developing solar cells.

  • Early Solar Cells and Applications:

The first practical application of the photovoltaic effect came in 1954 when Bell Laboratories introduced the first commercially viable solar cell. Developed by scientists Gerald Pearson, Calvin Fuller, and Daryl Chapin, this early solar cell achieved a 4% efficiency. While initially expensive, these cells found niche applications, such as powering satellites, signaling a new era in space exploration.

  • Solar Energy in Space:

The space race of the mid-20th century accelerated solar technology. Satellites, including the Vanguard 1 (1958) and the Nimbus series, extensively used solar cells for power generation. This demonstrated the reliability of solar technology and contributed to ongoing research, pushing the efficiency and affordability of solar cells.

  • Grid-Connected Solar Power:

The 1970s saw the emergence of grid-connected solar power systems on Earth. These systems allowed homes and businesses to generate electricity from sunlight and feed excess power into the grid. However, the high cost of solar panels limited widespread adoption.

  • Advancements in Photovoltaic Technology:

Subsequent decades witnessed significant advancements in photovoltaic technology. Ongoing research and development improved solar cell efficiency, reduced manufacturing costs, and increased durability. Thin-film solar cells, multi-junction solar cells, and other innovations further expanded the applicability of solar energy.

  • Growth of Solar Photovoltaics:

The 21st century marked a remarkable surge in solar photovoltaic installations. Advances in manufacturing processes, government incentives, and growing environmental consciousness contributed to the widespread adoption of solar panels in residential, commercial, and utility-scale settings.

  • Concentrated Solar Power (CSP):

Concentrated solar power (CSP) technologies have developed together with the growth of photovoltaics. In CSP systems, sunlight is directed onto a tiny area by mirrors or lenses, creating heat that can be converted into electrical power. These systems work very well for producing enormous amounts of electricity.

  • Smart Grid Integration and Energy Storage:

Recent developments involve integrating solar power into smart grids and incorporating energy storage solutions. Smart grids enable better management of fluctuating solar power production, while advancements in energy storage, such as lithium-ion batteries, address the intermittent nature of solar energy, allowing for a more reliable electricity supply.

How Solar Energy Works

How Solar Energy Works

Let’s break down how solar energy works into steps:

  • Sunlight as a Source: Solar energy begins with the sun, emitting vast amounts of radiant energy in photons. These photons travel through space and reach the Earth.
  • Photovoltaic Effect (PV): Solar panels, typically made of silicon-based photovoltaic cells, are the foundation of most solar energy systems. When sunlight strikes these cells, it stimulates the photovoltaic effect, causing the cells to release electrons.
  • Generation of Electricity: An electric current flows through the solar cell as a result of these electrons moving. The connected cells in a panel generate direct current (DC) power.
  • Inverter Conversion: The inverter processes the direct current (DC) electricity from the solar panels because the majority of household equipment and the grid run on alternating current (AC). The inverter transforms the DC electricity into usable AC electricity, which matches the common electrical current found in homes and businesses.
  • Usage and Storage: The electricity generated can be used immediately to power devices or can be sent to the electrical grid. Batteries can be used to store extra electricity for use at a later time when demand is lower than solar production. This way, power is always available even when the sun isn’t shining.
  • Net Metering and Grid Interaction: Systems that are connected to the grid can recycle excess energy produced by solar panels back into it. Users obtain credits or rewards for the extra energy they give through a procedure known as net metering.
  • Concentrated Solar Power (CSP): In some systems, particularly large-scale ones, mirrors or lenses concentrate sunlight onto a small area. This concentrated light is used to heat a fluid (often molten salt) that generates steam to drive turbines, producing electricity in a manner similar to traditional power plants.

Solar energy systems are a reliable and sustainable source of electricity. They work continuously in sunlight. The efficiency of solar panels depends on panel quality, weather conditions, and the sun’s angle. Advancements in solar technology have improved efficiency, durability, and affordability, driving widespread adoption from households to large installations.

Types of Solar Energy

Solar energy comes in various forms, each with unique technologies and applications. The two primary types are Photovoltaic (PV) Solar Power and Concentrated Solar Power (CSP).

  • Photovoltaic (PV) Solar Power: Photovoltaic technology uses semiconductor materials like silicon to turn sunlight into power directly.

How it Works: Photons in the sunshine break electrons loose from their atoms when they strike the solar cells, creating an electric current.

Applications:

  • Residential Solar Panels: PV panels on rooftops generate electricity for household use.
  • Commercial and Industrial Installations: Larger PV arrays power businesses and industries.
  • Utility-Scale Solar Farms: Large-scale installations contribute to the grid’s electricity supply.

Advantages:

  • Modular and scalable installations.
  • Low maintenance requirements.
  • Applicable in various settings.
  • Concentrated Solar Power (CSP): Concentrated solar power systems generate heat that can be converted into electricity by focusing sunlight onto a tiny area using mirrors or lenses.

How it Works: CSP systems concentrate sunlight to create high temperatures, typically used to produce steam that drives turbines connected to generators.

  • Solar Thermal Power Plants: Large-scale facilities generate electricity for the grid.
  • Industrial Processes: CSP can provide heat for industrial applications like desalination or chemical production.
  • Solar Cookers: Small-scale CSP systems for cooking in off-grid areas.
  • Capable of providing both electricity and heat.
  • Storage systems can store heat for continuous power generation.
  • Suitable for large-scale power generation.
  • Thin-Film Solar Cells: Thin-film To produce energy, solar cells employ thin layers of semiconductor materials.

How it Works: Thin layers of semiconductor materials, such as cadmium telluride or amorphous silicon, absorb sunlight to produce an electric current.

  • Flexible and lightweight, enabling integration into various surfaces.
  • Used in building-integrated photovoltaics (BIPV).
  • Suitable for portable solar applications.
  • Lower manufacturing costs compared to traditional PV cells.
  • Adaptability to different surfaces and environments.
  • Organic Photovoltaics (OPV): Organic photovoltaics use organic materials, like polymers, to convert sunlight into electricity.

How it Works: Organic materials absorb sunlight and create electron-hole pairs, generating an electric current.

  • Flexible and lightweight, suitable for flexible electronics.
  • Integration into fabrics and consumer goods.
  • Emerging technology with potential for widespread use.
  • Potential for low-cost, large-scale production.
  • Flexibility and versatility in design and application.
  • Solar Thermal Systems: Utilizing the sun’s energy, solar thermal systems generate heat that can be utilized for a number of things, including the production of electricity.

How it Works: Mirrors or lenses focus sunlight to generate heat, which can be used for space heating, water heating, or power generation.

  • Space heating in residential and commercial buildings.
  • Solar water heaters for residential and industrial use.
  • Hybrid systems for combined electricity and heat production.
  • Efficient for applications requiring heat.
  • Storage options for continuous heat supply.

Importance of Solar Energy

Solar energy holds significant importance across various domains due to its multifaceted advantages and potential contributions:

  • Sustainability: One resource that can be used forever is solar energy. Unlike finite fossil resources, the energy from the sun is abundant and freely available. Its sustainability guarantees a consistent and reliable energy source well into the future.
  • Environmental Benefits: While fossil fuels contribute to air pollution and climate change, solar energy is pure and produces no greenhouse emissions throughout the electricity generation process. Solar power’s lower carbon emissions lessen climate change and its related environmental effects.
  • Energy Independence: Harnessing solar energy reduces dependence on imported fossil fuels, thereby enhancing energy independence for nations. This independence strengthens energy security and reduces geopolitical tensions related to energy resources.
  • Economic Advantages: Jobs related to solar power could be generated in a number of industries, including production, installation, maintenance, and research. With the advancement of technology and scaling up production, the cost of solar energy is decreasing, making it more affordable and economically viable.
  • Accessible and Scalable: Solar energy systems can be installed at various scales, from small residential setups to large utility-scale installations. This versatility makes solar power accessible to urban and rural areas, providing electricity in remote locations without access to traditional power grids.
  • Reduced Strain on Resources: Solar power reduces the strain on finite resources such as coal, oil, and natural gas. Using sunlight lessens the demand for these resources, contributing to their conservation for future generations.
  • Grid Stability and Peak Demand: Solar energy can contribute to grid stability by providing power during peak demand periods. Solar power can supply electricity even when sunlight is unavailable when integrated with energy storage systems, enhancing the grid’s reliability.
  • Community and Resilience: Solar power fosters community resilience by decentralizing energy production. Solar installations, especially when paired with energy storage, can provide essential electricity independently of centralized grids in emergencies or natural disasters.

Technological Advancements

Solar energy has made significant technological advancements. These innovations have made it more reliable and affordable to meet the growing demand for cleaner energy alternatives.

  • Innovations in Solar Panel Efficiency:
  • Thin-Film Technology: Thin-film technologies, such as cadmium telluride (CdTe) or copper indium gallium selenide (CIGS), have replaced traditional silicon-based solar panels due to their lightweight construction, flexibility, and lower manufacturing costs.
  • Tandem Solar Cells: Tandem solar cells stack multiple layers of solar materials to capture a broader spectrum of sunlight. This allows for increased efficiency by maximizing the conversion of the sun into electricity.
  • Perovskite Solar Cells: Perovskite-based solar cells have emerged as a promising alternative due to their low-cost production and high efficiency. Ongoing research aims to overcome stability challenges and commercialize this technology.
  • Energy Storage Solutions:
  • Advanced Battery Technologies: Energy storage is crucial to integrating solar power. By increasing storage capacity, shortening charging periods, and extending lifespans, battery technology advancements like lithium-ion batteries have addressed the sporadic nature of solar energy.
  • Flow Batteries: Flow batteries, which store energy in liquid electrolytes, offer scalability and the ability to store large amounts of energy. When there is not as much sunlight, these batteries can supplement solar power by offering a reliable energy source.
  • Smart Grid Integration and Smart Cities:
  • Grid-Scale Solar Farms: Large solar farms connected to smart networks make effective solar energy distribution possible. Smart grids dynamically balance the supply and demand of electricity through the use of cutting-edge communication and control technology.
  • Smart Inverters and Microgrids: Smart inverters help manage the flow of electricity, optimizing power quality and grid stability. Microgrids and decentralized energy systems empower communities to generate, store, and distribute solar energy locally, enhancing resilience and reliability.

Applications of Solar energy

  • Residential Power Generation:

The use of solar energy in homes is among its most popular uses. Homeowners can mount solar panels on their rooftops to capture sunlight and produce electricity. As a result, there is less dependency on traditional power sources, and people may help create a more sustainable and clean energy infrastructure. Another residential use that uses solar thermal systems to heat water for domestic use is solar water heaters, which offer an energy-efficient substitute for conventional electric water heaters.

  • Commercial and Industrial Use: Most commercial and industrial sectors use solar energy. Businesses can install solar panels to generate on-site power, reducing operational costs and environmental impact. Solar power is also harnessed for agricultural purposes, powering farm irrigation systems. This application enhances water efficiency and diminishes reliance on grid electricity, fostering sustainable agricultural practices.
  • Solar Farms and Utility-Scale Power Plants: Large-scale electricity generation from solar farms and utility-scale installations contributes substantially to the power grid. These solar power plants serve to address the growing demand for electricity while lowering dependency on fossil fuels by supplying sustainable energy to businesses and communities. Additionally, solar power proves valuable in remote areas’ power supply, offering a sustainable solution for electrifying regions without access to traditional power infrastructure.
  • Transportation:

Solar energy is increasingly integrated into various modes of transportation. Solar panels on electric vehicles and at charging stations extend the range of electric transportation and contribute to more sustainable mobility solutions. Solar-powered boats and aircraft also demonstrate the adaptability of solar energy in diverse transportation applications, showcasing its potential to reduce dependence on traditional fuel sources.

  • Space Exploration:

Solar panels are a critical component of spacecraft and satellites, where the sun’s energy is harnessed in the vacuum of space. The reliability and efficiency of solar panels make them indispensable for powering instruments, communication devices, and other systems aboard spacecraft, enabling extended missions and exploration.

  • Water Desalination:

Solar energy is utilized to power desalination plants in regions facing water scarcity. These plants convert seawater into freshwater, addressing water shortages and providing a sustainable solution to the growing demand for clean water in arid areas.

  • Community and Rural Electrification:

Solar microgrids bring electricity to off-grid and rural areas, improving living standards and fostering economic development. This application of solar energy empowers communities with access to clean and reliable power, positively impacting education, healthcare, and overall quality of life.

  • Smart Cities and Urban Planning:

Solar energy is integrated into smart cities and urban planning initiatives through applications like solar street lights and solar-powered infrastructure. Energy-efficient lighting powered by solar panels enhances safety and reduces energy consumption in urban areas, contributing to sustainable urban development and reducing the environmental footprint of cities.

Case Studies

Case study 1: the solarcity microgrid in ta’u, american samoa.

In 2016, Tesla (now part of Tesla, Inc.) collaborated with SolarCity to develop a solar microgrid on the remote island of Ta’u in American Samoa. The project aimed to reduce the island’s dependency on imported diesel fuel for electricity generation.

Implementation:

SolarCity installed a 1.4-megawatt solar array of 5,328 solar panels and 60 Tesla Powerpacks for energy storage. The microgrid was designed to meet nearly 100% of the island’s energy needs during daylight hours, with excess energy stored for nighttime use. The transition to solar energy significantly reduced the island’s reliance on diesel generators.

  • The microgrid has successfully demonstrated the feasibility and reliability of solar energy in a remote location, reducing diesel consumption by about 109,500 gallons per year.
  • Dependence on fossil fuels decreased, resulting in a more sustainable and environmentally friendly energy solution.
  • The project is a model for other islands and remote communities seeking energy independence.

Case Study 2: The Noor Solar Complex in Ouarzazate, Morocco

The Noor Solar Complex near Ouarzazate in Morocco is one of the world’s largest concentrated solar power (CSP) projects. It aims to harness solar energy to meet the country’s growing energy demands.

This solar power complex has multiple phases, with the first completed in 2016. It covers thousands of acres, including parabolic troughs and a solar power tower. The parabolic troughs heat a transfer fluid, which produces steam to drive turbines. The power tower uses mirrors to focus sunlight onto a central receiver.

  • The Noor Solar Complex contributes significantly to Morocco’s renewable energy goals, reducing the country’s reliance on fossil fuels.
  • The project has a total capacity of over 500 megawatts, making it a substantial and reliable source of clean energy.
  • Implementing CSP technology demonstrates the scalability and potential of concentrated solar power in large-scale electricity generation.

Case Study 3: Rooftop Solar in California, USA

California has been at the forefront of adopting rooftop solar installations, with numerous residential and commercial properties embracing solar panels to generate clean energy.

Through various incentive programs, net metering policies, and decreasing solar panel costs, many Californians have installed rooftop solar systems. The state encourages solar adoption, providing financial incentives and support to individuals and businesses investing in solar energy.

  • California has emerged as a leader in the production of solar energy, generating a sizable amount of its electricity from solar sources.
  • Both individual energy savings and the state’s total decrease in greenhouse gas emissions are facilitated by rooftop solar systems.
  • The success of California’s rooftop solar initiatives is a model for other regions seeking to promote decentralized solar power generation.

Solar energy’s versatility spans residential, commercial, and industrial sectors, revolutionizing power generation and fostering sustainability. From rooftop panels to utility-scale plants, its role in reducing reliance on conventional sources and mitigating environmental impact is pivotal. Transportation, space exploration, and water desalination applications highlight its diverse capabilities. Integrating solar energy into smart cities and rural electrification underscores its potential for widespread positive impact. Continual technological advancements promise a brighter, cleaner future powered by the sun.

EDUCBA

*Please provide your correct email id. Login details for this Free course will be emailed to you

By signing up, you agree to our Terms of Use and Privacy Policy .

Valuation, Hadoop, Excel, Web Development & many more.

Forgot Password?

This website or its third-party tools use cookies, which are necessary to its functioning and required to achieve the purposes illustrated in the cookie policy. By closing this banner, scrolling this page, clicking a link or continuing to browse otherwise, you agree to our Privacy Policy

Quiz

Explore 1000+ varieties of Mock tests View more

Submit Next Question

🚀 Limited Time Offer! - 🎁 ENROLL NOW

Essay On Solar Energy

500 words essay on  solar energy.

Solar energy refers to the energy which the sunlight contains in the form of photons. It is not possible for life on earth to exist without solar energy .  All kinds of microorganisms and single-celled organisms came into existence with solar energy’s help. Plants have been using this energy ever since the beginning. Thus, through essay on solar energy, we will study about it in detail.

essay on solar energy

Methods of Using Solar Energy

We can trap solar energy in a lot of ways. One of the most efficient ways to do this is by using solar power plants. The design of these power plants is such that it helps to produce electricity on a larger level.

Other appliances which work on solar energy are solar cookers, solar heaters and solar cells. The solar cookers are said to be the most innovative methods of cooking nowadays. It is a great alternative to conventional fuels like gas, kerosene and wood .

These cookers are eco-friendly and also inexpensive means of cooking. Further, we have solar heaters which help to heat water using solar energy. Thus, it does not require electricity to heat water.

Finally, we have solar cells. They operate by directly converting solar light into electricity. In areas where supply from power grid is less available, solar cells are quite popular.

Similarly, a lot of calculators, wrist watch and other similar systems operate with this technology. The electricity which solar panels produce also stores in rechargeable solar batteries.

Advantages of Solar Energy

A major advantage of solar energy is that it is a renewable source. Thus, it will be available to use as long as the Sun is present. In other words, for another 5 billion years. As a result, everyone can use it abundantly.

Further, using solar energy can assist in reducing our electricity bills. When we use this energy, we will become less dependent on non-renewable sources of energy like petroleum and coal .

Moreover, we can utilize solar energy for a lot of purposes. One can produce electricity as well as heat. We use this energy in regions where we won’t require an electricity grid. Another advantage is that it is a clean fuel.

Using this energy will not result in pollution and thus, it won’t harm the environment. As a result, air pollution will significantly decrease. Both the government and individuals must try to promote and incorporate this energy in our daily lives.

This way, it can become the future of our world. It will make the world a greener and cleaner place as well. So, we must all try to switch to solar energy to make the world a better place.

Get the huge list of more than 500 Essay Topics and Ideas

Conclusion of Essay On Solar Energy

Solar energy is the future of our upcoming generation. It is safe and a greener and economical alternative. Moreover, it can be replenished so it serves as a renewable source of energy. As a result, it does not cause pollution . Thus, we must try to use solar energy more and more to save our planet earth.

FAQ on Essay On Solar Energy

Question 1: What is the importance of solar energy?

Answer 1: Solar energy is the power from the sun. It is a vast, inexhaustible, and clean resource. We can use this energy directly to heat and light homes and businesses. Similarly, we can also produce electricity, and heat water, solar cooling, and a variety of other commercial and industrial uses.

Question 2: Is solar energy renewable energy?

Answer 2: Yes, solar energy is a renewable energy. Thus, we can use it as much as we want and benefit from it in ways more than one.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

  • Search Menu
  • Sign in through your institution
  • Advanced Articles
  • Editor's Choice
  • Author Guidelines
  • Publish with us
  • Submission Site
  • Open Access
  • Self-Archiving Policy
  • About Clean Energy
  • About the National Institute of Clean and Low-Carbon Energy
  • Editorial Board
  • Instructions for Reviewers
  • Advertising & Corporate Services
  • Journals Career Network
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

Introduction, 1 installed capacity and application of solar energy worldwide, 2 the role of solar energy in sustainable development, 3 the perspective of solar energy, 4 conclusions, conflict of interest statement.

  • < Previous

Solar energy technology and its roles in sustainable development

ORCID logo

  • Article contents
  • Figures & tables
  • Supplementary Data

Ali O M Maka, Jamal M Alabid, Solar energy technology and its roles in sustainable development, Clean Energy , Volume 6, Issue 3, June 2022, Pages 476–483, https://doi.org/10.1093/ce/zkac023

  • Permissions Icon Permissions

Solar energy is environmentally friendly technology, a great energy supply and one of the most significant renewable and green energy sources. It plays a substantial role in achieving sustainable development energy solutions. Therefore, the massive amount of solar energy attainable daily makes it a very attractive resource for generating electricity. Both technologies, applications of concentrated solar power or solar photovoltaics, are always under continuous development to fulfil our energy needs. Hence, a large installed capacity of solar energy applications worldwide, in the same context, supports the energy sector and meets the employment market to gain sufficient development. This paper highlights solar energy applications and their role in sustainable development and considers renewable energy’s overall employment potential. Thus, it provides insights and analysis on solar energy sustainability, including environmental and economic development. Furthermore, it has identified the contributions of solar energy applications in sustainable development by providing energy needs, creating jobs opportunities and enhancing environmental protection. Finally, the perspective of solar energy technology is drawn up in the application of the energy sector and affords a vision of future development in this domain.

graphic

With reference to the recommendations of the UN, the Climate Change Conference, COP26, was held in Glasgow , UK, in 2021. They reached an agreement through the representatives of the 197 countries, where they concurred to move towards reducing dependency on coal and fossil-fuel sources. Furthermore, the conference stated ‘the various opportunities for governments to prioritize health and equity in the international climate movement and sustainable development agenda’. Also, one of the testaments is the necessity to ‘create energy systems that protect and improve climate and health’ [ 1 , 2 ].

The Paris Climate Accords is a worldwide agreement on climate change signed in 2015, which addressed the mitigation of climate change, adaptation and finance. Consequently, the representatives of 196 countries concurred to decrease their greenhouse gas emissions [ 3 ]. The Paris Agreement is essential for present and future generations to attain a more secure and stable environment. In essence, the Paris Agreement has been about safeguarding people from such an uncertain and progressively dangerous environment and ensuring everyone can have the right to live in a healthy, pollutant-free environment without the negative impacts of climate change [ 3 , 4 ].

In recent decades, there has been an increase in demand for cleaner energy resources. Based on that, decision-makers of all countries have drawn up plans that depend on renewable sources through a long-term strategy. Thus, such plans reduce the reliance of dependence on traditional energy sources and substitute traditional energy sources with alternative energy technology. As a result, the global community is starting to shift towards utilizing sustainable energy sources and reducing dependence on traditional fossil fuels as a source of energy [ 5 , 6 ].

In 2015, the UN adopted the sustainable development goals (SDGs) and recognized them as international legislation, which demands a global effort to end poverty, safeguard the environment and guarantee that by 2030, humanity lives in prosperity and peace. Consequently, progress needs to be balanced among economic, social and environmental sustainability models [ 7 ].

Many national and international regulations have been established to control the gas emissions and pollutants that impact the environment [ 8 ]. However, the negative effects of increased carbon in the atmosphere have grown in the last 10 years. Production and use of fossil fuels emit methane (CH 4 ), carbon dioxide (CO 2 ) and carbon monoxide (CO), which are the most significant contributors to environmental emissions on our planet. Additionally, coal and oil, including gasoline, coal, oil and methane, are commonly used in energy for transport or for generating electricity. Therefore, burning these fossil fuel s is deemed the largest emitter when used for electricity generation, transport, etc. However, these energy resources are considered depleted energy sources being consumed to an unsustainable degree [ 9–11 ].

Energy is an essential need for the existence and growth of human communities. Consequently, the need for energy has increased gradually as human civilization has progressed. Additionally, in the past few decades, the rapid rise of the world’s population and its reliance on technological developments have increased energy demands. Furthermore, green technology sources play an important role in sustainably providing energy supplies, especially in mitigating climate change [ 5 , 6 , 8 ].

Currently, fossil fuels remain dominant and will continue to be the primary source of large-scale energy for the foreseeable future; however, renewable energy should play a vital role in the future of global energy. The global energy system is undergoing a movement towards more sustainable sources of energy [ 12 , 13 ].

Power generation by fossil-fuel resources has peaked, whilst solar energy is predicted to be at the vanguard of energy generation in the near future. Moreover, it is predicted that by 2050, the generation of solar energy will have increased to 48% due to economic and industrial growth [ 13 , 14 ].

In recent years, it has become increasingly obvious that the globe must decrease greenhouse gas emissions by 2050, ideally towards net zero, if we are to fulfil the Paris Agreement’s goal to reduce global temperature increases [ 3 , 4 ]. The net-zero emissions complement the scenario of sustainable development assessment by 2050. According to the agreed scenario of sustainable development, many industrialized economies must achieve net-zero emissions by 2050. However, the net-zero emissions 2050 brought the first detailed International Energy Agency (IEA) modelling of what strategy will be required over the next 10 years to achieve net-zero carbon emissions worldwide by 2050 [ 15–17 ].

The global statistics of greenhouse gas emissions have been identified; in 2019, there was a 1% decrease in CO 2 emissions from the power industry; that figure dropped by 7% in 2020 due to the COVID-19 crisis, thus indicating a drop in coal-fired energy generation that is being squeezed by decreasing energy needs, growth of renewables and the shift away from fossil fuels. As a result, in 2020, the energy industry was expected to generate ~13 Gt CO 2 , representing ~40% of total world energy sector emissions related to CO 2 . The annual electricity generation stepped back to pre-crisis levels by 2021, although due to a changing ‘fuel mix’, the CO 2 emissions in the power sector will grow just a little before remaining roughly steady until 2030 [ 15 ].

Therefore, based on the information mentioned above, the advantages of solar energy technology are a renewable and clean energy source that is plentiful, cheaper costs, less maintenance and environmentally friendly, to name but a few. The significance of this paper is to highlight solar energy applications to ensure sustainable development; thus, it is vital to researchers, engineers and customers alike. The article’s primary aim is to raise public awareness and disseminate the culture of solar energy usage in daily life, since moving forward, it is the best. The scope of this paper is as follows. Section 1 represents a summary of the introduction. Section 2 represents a summary of installed capacity and the application of solar energy worldwide. Section 3 presents the role of solar energy in the sustainable development and employment of renewable energy. Section 4 represents the perspective of solar energy. Finally, Section 5 outlines the conclusions and recommendations for future work.

1.1 Installed capacity of solar energy

The history of solar energy can be traced back to the seventh century when mirrors with solar power were used. In 1893, the photovoltaic (PV) effect was discovered; after many decades, scientists developed this technology for electricity generation [ 18 ]. Based on that, after many years of research and development from scientists worldwide, solar energy technology is classified into two key applications: solar thermal and solar PV.

PV systems convert the Sun’s energy into electricity by utilizing solar panels. These PV devices have quickly become the cheapest option for new electricity generation in numerous world locations due to their ubiquitous deployment. For example, during the period from 2010 to 2018, the cost of generating electricity by solar PV plants decreased by 77%. However, solar PV installed capacity progress expanded 100-fold between 2005 and 2018. Consequently, solar PV has emerged as a key component in the low-carbon sustainable energy system required to provide access to affordable and dependable electricity, assisting in fulfilling the Paris climate agreement and in achieving the 2030 SDG targets [ 19 ].

The installed capacity of solar energy worldwide has been rapidly increased to meet energy demands. The installed capacity of PV technology from 2010 to 2020 increased from 40 334 to 709 674 MW, whereas the installed capacity of concentrated solar power (CSP) applications, which was 1266 MW in 2010, after 10 years had increased to 6479 MW. Therefore, solar PV technology has more deployed installations than CSP applications. So, the stand-alone solar PV and large-scale grid-connected PV plants are widely used worldwide and used in space applications. Fig. 1 represents the installation of solar energy worldwide.

Installation capacity of solar energy worldwide [20].

Installation capacity of solar energy worldwide [ 20 ].

1.2 Application of solar energy

Energy can be obtained directly from the Sun—so-called solar energy. Globally, there has been growth in solar energy applications, as it can be used to generate electricity, desalinate water and generate heat, etc. The taxonomy of applications of solar energy is as follows: (i) PVs and (ii) CSP. Fig. 2 details the taxonomy of solar energy applications.

The taxonomy of solar energy applications.

The taxonomy of solar energy applications.

Solar cells are devices that convert sunlight directly into electricity; typical semiconductor materials are utilized to form a PV solar cell device. These materials’ characteristics are based on atoms with four electrons in their outer orbit or shell. Semiconductor materials are from the periodic table’s group ‘IV’ or a mixture of groups ‘IV’ and ‘II’, the latter known as ‘II–VI’ semiconductors [ 21 ]. Additionally, a periodic table mixture of elements from groups ‘III’ and ‘V’ can create ‘III–V’ materials [ 22 ].

PV devices, sometimes called solar cells, are electronic devices that convert sunlight into electrical power. PVs are also one of the rapidly growing renewable-energy technologies of today. It is therefore anticipated to play a significant role in the long-term world electricity-generating mixture moving forward.

Solar PV systems can be incorporated to supply electricity on a commercial level or installed in smaller clusters for mini-grids or individual usage. Utilizing PV modules to power mini-grids is a great way to offer electricity to those who do not live close to power-transmission lines, especially in developing countries with abundant solar energy resources. In the most recent decade, the cost of producing PV modules has dropped drastically, giving them not only accessibility but sometimes making them the least expensive energy form. PV arrays have a 30-year lifetime and come in various shades based on the type of material utilized in their production.

The most typical method for solar PV desalination technology that is used for desalinating sea or salty water is electrodialysis (ED). Therefore, solar PV modules are directly connected to the desalination process. This technique employs the direct-current electricity to remove salt from the sea or salty water.

The technology of PV–thermal (PV–T) comprises conventional solar PV modules coupled with a thermal collector mounted on the rear side of the PV module to pre-heat domestic hot water. Accordingly, this enables a larger portion of the incident solar energy on the collector to be converted into beneficial electrical and thermal energy.

A zero-energy building is a building that is designed for zero net energy emissions and emits no carbon dioxide. Building-integrated PV (BIPV) technology is coupled with solar energy sources and devices in buildings that are utilized to supply energy needs. Thus, building-integrated PVs utilizing thermal energy (BIPV/T) incorporate creative technologies such as solar cooling [ 23 ].

A PV water-pumping system is typically used to pump water in rural, isolated and desert areas. The system consists of PV modules to power a water pump to the location of water need. The water-pumping rate depends on many factors such as pumping head, solar intensity, etc.

A PV-powered cathodic protection (CP) system is designed to supply a CP system to control the corrosion of a metal surface. This technique is based on the impressive current acquired from PV solar energy systems and is utilized for burying pipelines, tanks, concrete structures, etc.

Concentrated PV (CPV) technology uses either the refractive or the reflective concentrators to increase sunlight to PV cells [ 24 , 25 ]. High-efficiency solar cells are usually used, consisting of many layers of semiconductor materials that stack on top of each other. This technology has an efficiency of >47%. In addition, the devices produce electricity and the heat can be used for other purposes [ 26 , 27 ].

For CSP systems, the solar rays are concentrated using mirrors in this application. These rays will heat a fluid, resulting in steam used to power a turbine and generate electricity. Large-scale power stations employ CSP to generate electricity. A field of mirrors typically redirect rays to a tall thin tower in a CSP power station. Thus, numerous large flat heliostats (mirrors) are used to track the Sun and concentrate its light onto a receiver in power tower systems, sometimes known as central receivers. The hot fluid could be utilized right away to produce steam or stored for later usage. Another of the great benefits of a CSP power station is that it may be built with molten salts to store heat and generate electricity outside of daylight hours.

Mirrored dishes are used in dish engine systems to focus and concentrate sunlight onto a receiver. The dish assembly tracks the Sun’s movement to capture as much solar energy as possible. The engine includes thin tubes that work outside the four-piston cylinders and it opens into the cylinders containing hydrogen or helium gas. The pistons are driven by the expanding gas. Finally, the pistons drive an electric generator by turning a crankshaft.

A further water-treatment technique, using reverse osmosis, depends on the solar-thermal and using solar concentrated power through the parabolic trough technique. The desalination employs CSP technology that utilizes hybrid integration and thermal storage allows continuous operation and is a cost-effective solution. Solar thermal can be used for domestic purposes such as a dryer. In some countries or societies, the so-called food dehydration is traditionally used to preserve some food materials such as meats, fruits and vegetables.

Sustainable energy development is defined as the development of the energy sector in terms of energy generating, distributing and utilizing that are based on sustainability rules [ 28 ]. Energy systems will significantly impact the environment in both developed and developing countries. Consequently, the global sustainable energy system must optimize efficiency and reduce emissions [ 29 ].

The sustainable development scenario is built based on the economic perspective. It also examines what activities will be required to meet shared long-term climate benefits, clean air and energy access targets. The short-term details are based on the IEA’s sustainable recovery strategy, which aims to promote economies and employment through developing a cleaner and more reliable energy infrastructure [ 15 ]. In addition, sustainable development includes utilizing renewable-energy applications, smart-grid technologies, energy security, and energy pricing, and having a sound energy policy [ 29 ].

The demand-side response can help meet the flexibility requirements in electricity systems by moving demand over time. As a result, the integration of renewable technologies for helping facilitate the peak demand is reduced, system stability is maintained, and total costs and CO 2 emissions are reduced. The demand-side response is currently used mostly in Europe and North America, where it is primarily aimed at huge commercial and industrial electricity customers [ 15 ].

International standards are an essential component of high-quality infrastructure. Establishing legislative convergence, increasing competition and supporting innovation will allow participants to take part in a global world PV market [ 30 ]. Numerous additional countries might benefit from more actively engaging in developing global solar PV standards. The leading countries in solar PV manufacturing and deployment have embraced global standards for PV systems and highly contributed to clean-energy development. Additional assistance and capacity-building to enhance quality infrastructure in developing economies might also help support wider implementation and compliance with international solar PV standards. Thus, support can bring legal requirements and frameworks into consistency and give additional impetus for the trade of secure and high-quality solar PV products [ 19 ].

Continuous trade-led dissemination of solar PV and other renewable technologies will strengthen the national infrastructure. For instance, off-grid solar energy alternatives, such as stand-alone systems and mini-grids, could be easily deployed to assist healthcare facilities in improving their degree of services and powering portable testing sites and vaccination coolers. In addition to helping in the immediate medical crisis, trade-led solar PV adoption could aid in the improving economy from the COVID-19 outbreak, not least by providing jobs in the renewable-energy sector, which are estimated to reach >40 million by 2050 [ 19 ].

The framework for energy sustainability development, by the application of solar energy, is one way to achieve that goal. With the large availability of solar energy resources for PV and CSP energy applications, we can move towards energy sustainability. Fig. 3 illustrates plans for solar energy sustainability.

Framework for solar energy applications in energy sustainability.

Framework for solar energy applications in energy sustainability.

The environmental consideration of such applications, including an aspect of the environmental conditions, operating conditions, etc., have been assessed. It is clean, friendly to the environment and also energy-saving. Moreover, this technology has no removable parts, low maintenance procedures and longevity.

Economic and social development are considered by offering job opportunities to the community and providing cheaper energy options. It can also improve people’s income; in turn, living standards will be enhanced. Therefore, energy is paramount, considered to be the most vital element of human life, society’s progress and economic development.

As efforts are made to increase the energy transition towards sustainable energy systems, it is anticipated that the next decade will see a continued booming of solar energy and all clean-energy technology. Scholars worldwide consider research and innovation to be substantial drivers to enhance the potency of such solar application technology.

2.1 Employment from renewable energy

The employment market has also boomed with the deployment of renewable-energy technology. Renewable-energy technology applications have created >12 million jobs worldwide. The solar PV application came as the pioneer, which created >3 million jobs. At the same time, while the solar thermal applications (solar heating and cooling) created >819 000 jobs, the CSP attained >31 000 jobs [ 20 ].

According to the reports, although top markets such as the USA, the EU and China had the highest investment in renewables jobs, other Asian countries have emerged as players in the solar PV panel manufacturers’ industry [ 31 ].

Solar energy employment has offered more employment than other renewable sources. For example, in the developing countries, there was a growth in employment chances in solar applications that powered ‘micro-enterprises’. Hence, it has been significant in eliminating poverty, which is considered the key goal of sustainable energy development. Therefore, solar energy plays a critical part in fulfilling the sustainability targets for a better plant and environment [ 31 , 32 ]. Fig. 4 illustrates distributions of world renewable-energy employment.

World renewable-energy employment [20].

World renewable-energy employment [ 20 ].

The world distribution of PV jobs is disseminated across the continents as follows. There was 70% employment in PV applications available in Asia, while 10% is available in North America, 10% available in South America and 10% availability in Europe. Table 1 details the top 10 countries that have relevant jobs in Asia, North America, South America and Europe.

List of the top 10 countries that created jobs in solar PV applications [ 19 , 33 ]

ContinentCountryPrevalent jobs (millions of jobs)
AsiaChina2.240
AsiaJapan0.250
North AmericaUnited States0.240
AsiaIndia0.205
AsiaBangladesh0.145
AsiaViet Nam0.055
AsiaMalaysia0.050
South AmericaBrazil0.040
EuropeGermany0.030
AsiaPhilippines0.020
ContinentCountryPrevalent jobs (millions of jobs)
AsiaChina2.240
AsiaJapan0.250
North AmericaUnited States0.240
AsiaIndia0.205
AsiaBangladesh0.145
AsiaViet Nam0.055
AsiaMalaysia0.050
South AmericaBrazil0.040
EuropeGermany0.030
AsiaPhilippines0.020

Solar energy investments can meet energy targets and environmental protection by reducing carbon emissions while having no detrimental influence on the country’s development [ 32 , 34 ]. In countries located in the ‘Sunbelt’, there is huge potential for solar energy, where there is a year-round abundance of solar global horizontal irradiation. Consequently, these countries, including the Middle East, Australia, North Africa, China, the USA and Southern Africa, to name a few, have a lot of potential for solar energy technology. The average yearly solar intensity is >2800 kWh/m 2 and the average daily solar intensity is >7.5 kWh/m 2 . Fig. 5 illustrates the optimum areas for global solar irradiation.

World global solar irradiation map [35].

World global solar irradiation map [ 35 ].

The distribution of solar radiation and its intensity are two important factors that influence the efficiency of solar PV technology and these two parameters vary among different countries. Therefore, it is essential to realize that some solar energy is wasted since it is not utilized. On the other hand, solar radiation is abundant in several countries, especially in developing ones, which makes it invaluable [ 36 , 37 ].

Worldwide, the PV industry has benefited recently from globalization, which has allowed huge improvements in economies of scale, while vertical integration has created strong value chains: as manufacturers source materials from an increasing number of suppliers, prices have dropped while quality has been maintained. Furthermore, the worldwide incorporated PV solar device market is growing fast, creating opportunities enabling solar energy firms to benefit from significant government help with underwriting, subsides, beneficial trading licences and training of a competent workforce, while the increased rivalry has reinforced the motivation to continue investing in research and development, both public and private [ 19 , 33 ].

The global outbreak of COVID-19 has impacted ‘cross-border supply chains’ and those investors working in the renewable-energy sector. As a result, more diversity of solar PV supply-chain processes may be required in the future to enhance long-term flexibility versus exogenous shocks [ 19 , 33 ].

It is vital to establish a well-functioning quality infrastructure to expand the distribution of solar PV technologies beyond borders and make it easier for new enterprises to enter solar PV value chains. In addition, a strong quality infrastructure system is a significant instrument for assisting local firms in meeting the demands of trade markets. Furthermore, high-quality infrastructure can help reduce associated risks with the worldwide PV project value chain, such as underperforming, inefficient and failing goods, limiting the development, improvement and export of these technologies. Governments worldwide are, at various levels, creating quality infrastructure, including the usage of metrology i.e. the science of measurement and its application, regulations, testing procedures, accreditation, certification and market monitoring [ 33 , 38 ].

The perspective is based on a continuous process of technological advancement and learning. Its speed is determined by its deployment, which varies depending on the scenario [ 39 , 40 ]. The expense trends support policy preferences for low-carbon energy sources, particularly in increased energy-alteration scenarios. Emerging technologies are introduced and implemented as quickly as they ever have been before in energy history [ 15 , 33 ].

The CSP stations have been in use since the early 1980s and are currently found all over the world. The CSP power stations in the USA currently produce >800 MW of electricity yearly, which is sufficient to power ~500 000 houses. New CSP heat-transfer fluids being developed can function at ~1288 o C, which is greater than existing fluids, to improve the efficiency of CSP systems and, as a result, to lower the cost of energy generated using this technology. Thus, as a result, CSP is considered to have a bright future, with the ability to offer large-scale renewable energy that can supplement and soon replace traditional electricity-production technologies [ 41 ]. The DESERTEC project has drawn out the possibility of CSP in the Sahara Desert regions. When completed, this investment project will have the world’s biggest energy-generation capacity through the CSP plant, which aims to transport energy from North Africa to Europe [ 42 , 43 ].

The costs of manufacturing materials for PV devices have recently decreased, which is predicted to compensate for the requirements and increase the globe’s electricity demand [ 44 ]. Solar energy is a renewable, clean and environmentally friendly source of energy. Therefore, solar PV application techniques should be widely utilized. Although PV technology has always been under development for a variety of purposes, the fact that PV solar cells convert the radiant energy from the Sun directly into electrical power means it can be applied in space and in terrestrial applications [ 38 , 45 ].

In one way or another, the whole renewable-energy sector has a benefit over other energy industries. A long-term energy development plan needs an energy source that is inexhaustible, virtually accessible and simple to gather. The Sun rises over the horizon every day around the globe and leaves behind ~108–1018 kWh of energy; consequently, it is more than humanity will ever require to fulfil its desire for electricity [ 46 ].

The technology that converts solar radiation into electricity is well known and utilizes PV cells, which are already in use worldwide. In addition, various solar PV technologies are available today, including hybrid solar cells, inorganic solar cells and organic solar cells. So far, solar PV devices made from silicon have led the solar market; however, these PVs have certain drawbacks, such as expenditure of material, time-consuming production, etc. It is important to mention here the operational challenges of solar energy in that it does not work at night, has less output in cloudy weather and does not work in sandstorm conditions. PV battery storage is widely used to reduce the challenges to gain high reliability. Therefore, attempts have been made to find alternative materials to address these constraints. Currently, this domination is challenged by the evolution of the emerging generation of solar PV devices based on perovskite, organic and organic/inorganic hybrid materials.

This paper highlights the significance of sustainable energy development. Solar energy would help steady energy prices and give numerous social, environmental and economic benefits. This has been indicated by solar energy’s contribution to achieving sustainable development through meeting energy demands, creating jobs and protecting the environment. Hence, a paramount critical component of long-term sustainability should be investigated. Based on the current condition of fossil-fuel resources, which are deemed to be depleting energy sources, finding an innovative technique to deploy clean-energy technology is both essential and expected. Notwithstanding, solar energy has yet to reach maturity in development, especially CSP technology. Also, with growing developments in PV systems, there has been a huge rise in demand for PV technology applications all over the globe. Further work needs to be undertaken to develop energy sustainably and consider other clean energy resources. Moreover, a comprehensive experimental and validation process for such applications is required to develop cleaner energy sources to decarbonize our planet.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

World Health Organization . COP26 Special Report on Climate Change and Health: The Health Argument for Climate Action. Geneva : World Health Organization , 2021 .

Google Scholar

Google Preview

Hunter DB , Salzman JE , Zaelke D . Glasgow Climate Summit: COP26. UCLA School of Law, Public Law Research Paper No. 22-02. 2021 . doi: org/10.2139/ssrn.4005648 30 March 2022 , date last accessed).

UNFCCC . Paris Agreement-Status of Ratification, United Nations Framework Convention on Climate , 2016 . https://unfccc.int/process/the-paris-agreement/status-of-ratification ( 25 January 2022 , date last accessed).

UNFCCC . The Paris Agreement. Archived from the original on 19 March 2021 . Retrieved 18 September 2021 . https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement ( 2 February 2022 , date last accessed).

Watts RG. Engineering Response to Climate Change. 2nd edn. Boca Raton, FL : CRC Press , 2013 .

Sorensen B. Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning . 4th edn. London : Academic Press , 2010 .

IEA, IRENA, WMO, WBG, WHO . Tracking SDG7: The Energy Progress Report 2021. Washington, DC : The World Bank , 2021 .

Edenhofer O , Pichs-Madruga R , Sokona Y , et al.  Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change. Cambridge : Cambridge University Press , 2011 .

Roaf S , Roaf S , Crichton D , et al.  Adapting buildings and Cities for Climate Change: A 21st Century Survival Guide . 2nd edn. Oxford : Architectural Press , 2009 .

Sims RE . Renewable energy: a response to climate change . Solar Energy , 2004 , 76 : 9 – 17 .

Muneer T. Solar Radiation and Daylight Models. 2nd edn, London : Routledge , 2004 .

Martin J . ‘Green growth’: from a growing eco-industry to economic sustainability . Energy Policy , 2012 , 48 : 13 – 21 .

IRENA. A Roadmap to 2050: International Renewable Energy Agency: Global energy Transformation. Abu Dhabi : IRENA , 2018 .

Kost C , Mayer JN , Thomsen J , et al.  Levelized Cost of Electricity Renewable Energy Technologies. Freiburg : Fraunhofer Institute for Solar Energy Systems (ISE), 2013 , 144 .

Cozzi L , Gould T , Bouckart S , et al.  World Energy Outlook 2020. Paris : International Energy Agency , 2020 .

Ku AY , de Souza A , McRobie J , et al.  Zero-emission public transit could be a catalyst for decarbonization of the transportation and power sectors . Clean Energy , 2021 , 5 : 492 – 504 .

Bouckaert S , Pales AF , McGlade C , et al.  Net Zero by 2050: A Roadmap for the Global Energy Sector. Paris : International Energy Agency , 2021 .

Fraas LM . History of solar cell development . Low-cost Solar Electric Power. 2014 : 1 – 12 . doi: 10.1007/978-3-319-07530-31 .

Gahrens S , Alessandra S , Steinfatt K. Trading Into a Bright Energy Future. The Case for Open, High-Quality Solar Photovoltaic Markets . Abu Dhabi : IRENA , 2021 , 1 – 44 . https://irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jul/IRENA_WTO_Trading_Energy_Future_2021.pdf ( 21 April 2022 , date last accessed).

IRENA . Solar Energy—International Renewable Energy Agency . 2021 . www.irena.org/solar ( 2 February 2022 , date last accessed).

Honsberg C , Bowden S . Sun Position Calculator . 2014 . http://pveducation org/pvcdrom/properties-of-sunlight/sun-position-calculator ( 25 January 2022 , date last accessed).

Green MA , Hishikawa Y , Dunlop ED , et al.  Solar cell efficiency tables (version 52) . Progress in Photovoltaics , 2018 , 26 : 427 – 436 .

Kylili A , Fokaides PA . Investigation of building integrated photovoltaics potential in achieving the zero energy building target . Indoor Built Environment , 2014 , 23 : 92 – 106 .

Maka AO , O’Donovan TS . A review of thermal load and performance characterisation of a high concentrating photovoltaic (HCPV) solar receiver assembly . Solar Energy , 2020 , 206 : 35 – 51 .

Mohamed ET , Maka AO , Mehmood M , et al.  Performance simulation of single and dual-junction GaInP/GaAs tandem solar cells using AMPS-1D . Sustainable Energy Technologies Assessments , 2021 , 44 : 101067 .

Maka AO , O’Donovan TS . Dynamic performance analysis of solar concentrating photovoltaic receiver by coupling of weather data with the thermal-electrical model . Thermal Science Engineering Progress , 2021 , 24 : 100923 .

Maka AO , O’Donovan TS . Transient thermal-electrical performance modelling of solar concentrating photovoltaic (CPV) receiver . Solar Energy , 2020 , 211 : 897 – 907 .

Radovanovic M , Popov S , Dodic S. Sustainable Energy Management. Cambridge, MA : Academic Press , 2012 .

Salvarli MS , Salvarli H . For sustainable development: future trends in renewable energy and enabling technologies . In: Al Al Qubeissi M, El-kharouf A, Soyhan HS (eds). Qubeissi M , El-kharouf A , Soyhan HS (eds). Renewable Energy-Resources, Challenges and Applications . London : IntechOpen , 2020 .

Maka AO , Salem S , Mehmood M . Solar photovoltaic (PV) applications in Libya: challenges, potential, opportunities and future perspectives . Cleaner Engineering Technology , 2021 , 51 : 100267 .

IRENA . Renewable Energy and Jobs—Annual Review 2021, (REJ) . 2021 . https://www.irena.org/publications/2021/Oct/Renewable-Energy-and-Jobs-Annual-Review-2021 ( 2 January 2022 , date last accessed).

Obaideen K , AlMallahi MN , Alami AH , et al.  On the contribution of solar energy to sustainable developments goals: case study on Mohammed bin Rashid Al Maktoum Solar Park . International Journal of Thermofluids , 2021 , 12 : 100123 .

IRENA . International Renewable Energy Agency, Renewable Energy and Jobs—Annual Review 2020. Abu Dhabi : IRENA , 2020 .

Strielkowski W , Civín L , Tarkhanova E , et al.  Renewable energy in the sustainable development of electrical power sector: a review . Energies , 2021 , 14 : 8240 .

Grid-Arendal . Natural Resources—Solar Power (Potential) . 2008 . https://www.grida.no/resources/7308 ( 9 February 2022 , date last accessed).

Kannan N , Vakeesan D . Solar energy for future world: a review . Renewable Sustainable Energy Reviews , 2016 , 62 : 1092 – 1105 .

Löf GO , Duffie JA , Smith CO . World distribution of solar radiation . Solar Energy , 1966 , 10 : 27 – 37 .

Kabir E , Kumar P , Kumar S , et al.  Solar energy: potential and future prospects . Renewable Sustainable Energy Reviews , 2018 , 82 : 894 – 900 .

Johansson TB , Goldemberg J. Energy for Sustainable Development: A Policy Agenda. New York : United Nations Development Programme (UNDP) , 2002 .

Lowe R , Drummond P . Solar, wind and logistic substitution in global energy supply to 2050—barriers and implications . Renewable Sustainable Energy Reviews , 2022 , 153 : 111720 .

Asmelash E , Prakash G. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-economic Aspects . Abu Dhabi : IRENA , 2019 .

Griffiths S . Strategic considerations for deployment of solar photovoltaics in the Middle East and North Africa . Energy Strategy Reviews , 2013 , 2 : 125 – 131 .

Hafner M , Tagliapietra S , El Andaloussi EH . Outlook for Electricity and Renewable Energy in Southern and Eastern Mediterranean Countries. WP4b, Energy and Climate Change Mitigations, MEDPROTechnical Report No. 16/October 2012 . www.medpro-foresight.eu ( 25 January 2022 , date last accessed).

Martí A , Luque A. Next Generation Photovoltaics: High Efficiency Through Full Spectrum Utilization . 1st edn. Boca Raton, FL : CRC Press , 2003 .

Dimroth F , Kurtz S . High-efficiency multijunction solar cells . MRS Bulletin , 2007 , 32 : 230 – 235 .

Kashmir J . Solar Energy for Sustainable Development . 2018 . https://www.dailyexcelsior.com/solar-energy-sustainable-development/ ( 15 January 2022 , date last accessed).

Month: Total Views:
June 2022 304
July 2022 299
August 2022 337
September 2022 687
October 2022 1,332
November 2022 1,583
December 2022 2,090
January 2023 2,446
February 2023 2,862
March 2023 3,665
April 2023 3,829
May 2023 3,544
June 2023 2,783
July 2023 2,733
August 2023 3,336
September 2023 4,545
October 2023 5,912
November 2023 6,248
December 2023 5,279
January 2024 5,408
February 2024 6,849
March 2024 8,285
April 2024 7,768
May 2024 6,654
June 2024 4,920
July 2024 4,458

Email alerts

Citing articles via.

  • Advertising and Corporate Services

Affiliations

  • Online ISSN 2515-396X
  • Print ISSN 2515-4230
  • Copyright © 2024 National Institute of Clean-and-Low-Carbon Energy
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

  • CBSE Class 10th
  • CBSE Class 12th
  • UP Board 10th
  • UP Board 12th
  • Bihar Board 10th
  • Bihar Board 12th

Top Schools

  • Top Schools in India
  • Top Schools in Delhi
  • Top Schools in Mumbai
  • Top Schools in Chennai
  • Top Schools in Hyderabad
  • Top Schools in Kolkata
  • Top Schools in Pune
  • Top Schools in Bangalore

Products & Resources

  • JEE Main Knockout April
  • Free Sample Papers
  • Free Ebooks
  • NCERT Notes
  • NCERT Syllabus
  • NCERT Books
  • RD Sharma Solutions
  • Navodaya Vidyalaya Admission 2024-25
  • NCERT Solutions
  • NCERT Solutions for Class 12
  • NCERT Solutions for Class 11
  • NCERT solutions for Class 10
  • NCERT solutions for Class 9
  • NCERT solutions for Class 8
  • NCERT Solutions for Class 7
  • JEE Main Exam
  • JEE Advanced Exam
  • BITSAT Exam
  • View All Engineering Exams
  • Colleges Accepting B.Tech Applications
  • Top Engineering Colleges in India
  • Engineering Colleges in India
  • Engineering Colleges in Tamil Nadu
  • Engineering Colleges Accepting JEE Main
  • Top IITs in India
  • Top NITs in India
  • Top IIITs in India
  • JEE Main College Predictor
  • JEE Main Rank Predictor
  • MHT CET College Predictor
  • AP EAMCET College Predictor
  • GATE College Predictor
  • KCET College Predictor
  • JEE Advanced College Predictor
  • View All College Predictors
  • JEE Advanced Cutoff
  • JEE Main Cutoff
  • GATE Registration 2025
  • JEE Main Syllabus 2025
  • Download E-Books and Sample Papers
  • Compare Colleges
  • B.Tech College Applications
  • JEE Main Question Papers
  • MAH MBA CET Exam
  • View All Management Exams

Colleges & Courses

  • MBA College Admissions
  • MBA Colleges in India
  • Top IIMs Colleges in India
  • Top Online MBA Colleges in India
  • MBA Colleges Accepting XAT Score
  • BBA Colleges in India
  • XAT College Predictor 2025
  • SNAP College Predictor
  • NMAT College Predictor
  • MAT College Predictor 2024
  • CMAT College Predictor 2024
  • CAT Percentile Predictor 2024
  • CAT 2024 College Predictor
  • Top MBA Entrance Exams 2024
  • AP ICET Counselling 2024
  • GD Topics for MBA
  • CAT Exam Date 2024
  • Download Helpful Ebooks
  • List of Popular Branches
  • QnA - Get answers to your doubts
  • IIM Fees Structure
  • AIIMS Nursing
  • Top Medical Colleges in India
  • Top Medical Colleges in India accepting NEET Score
  • Medical Colleges accepting NEET
  • List of Medical Colleges in India
  • List of AIIMS Colleges In India
  • Medical Colleges in Maharashtra
  • Medical Colleges in India Accepting NEET PG
  • NEET College Predictor
  • NEET PG College Predictor
  • NEET MDS College Predictor
  • NEET Rank Predictor
  • DNB PDCET College Predictor
  • NEET Result 2024
  • NEET Asnwer Key 2024
  • NEET Cut off
  • NEET Online Preparation
  • Download Helpful E-books
  • Colleges Accepting Admissions
  • Top Law Colleges in India
  • Law College Accepting CLAT Score
  • List of Law Colleges in India
  • Top Law Colleges in Delhi
  • Top NLUs Colleges in India
  • Top Law Colleges in Chandigarh
  • Top Law Collages in Lucknow

Predictors & E-Books

  • CLAT College Predictor
  • MHCET Law ( 5 Year L.L.B) College Predictor
  • AILET College Predictor
  • Sample Papers
  • Compare Law Collages
  • Careers360 Youtube Channel
  • CLAT Syllabus 2025
  • CLAT Previous Year Question Paper
  • NID DAT Exam
  • Pearl Academy Exam

Predictors & Articles

  • NIFT College Predictor
  • UCEED College Predictor
  • NID DAT College Predictor
  • NID DAT Syllabus 2025
  • NID DAT 2025
  • Design Colleges in India
  • Top NIFT Colleges in India
  • Fashion Design Colleges in India
  • Top Interior Design Colleges in India
  • Top Graphic Designing Colleges in India
  • Fashion Design Colleges in Delhi
  • Fashion Design Colleges in Mumbai
  • Top Interior Design Colleges in Bangalore
  • NIFT Result 2024
  • NIFT Fees Structure
  • NIFT Syllabus 2025
  • Free Design E-books
  • List of Branches
  • Careers360 Youtube channel
  • IPU CET BJMC 2024
  • JMI Mass Communication Entrance Exam 2024
  • IIMC Entrance Exam 2024
  • Media & Journalism colleges in Delhi
  • Media & Journalism colleges in Bangalore
  • Media & Journalism colleges in Mumbai
  • List of Media & Journalism Colleges in India
  • CA Intermediate
  • CA Foundation
  • CS Executive
  • CS Professional
  • Difference between CA and CS
  • Difference between CA and CMA
  • CA Full form
  • CMA Full form
  • CS Full form
  • CA Salary In India

Top Courses & Careers

  • Bachelor of Commerce (B.Com)
  • Master of Commerce (M.Com)
  • Company Secretary
  • Cost Accountant
  • Charted Accountant
  • Credit Manager
  • Financial Advisor
  • Top Commerce Colleges in India
  • Top Government Commerce Colleges in India
  • Top Private Commerce Colleges in India
  • Top M.Com Colleges in Mumbai
  • Top B.Com Colleges in India
  • IT Colleges in Tamil Nadu
  • IT Colleges in Uttar Pradesh
  • MCA Colleges in India
  • BCA Colleges in India

Quick Links

  • Information Technology Courses
  • Programming Courses
  • Web Development Courses
  • Data Analytics Courses
  • Big Data Analytics Courses
  • RUHS Pharmacy Admission Test
  • Top Pharmacy Colleges in India
  • Pharmacy Colleges in Pune
  • Pharmacy Colleges in Mumbai
  • Colleges Accepting GPAT Score
  • Pharmacy Colleges in Lucknow
  • List of Pharmacy Colleges in Nagpur
  • GPAT Result
  • GPAT 2024 Admit Card
  • GPAT Question Papers
  • NCHMCT JEE 2024
  • Mah BHMCT CET
  • Top Hotel Management Colleges in Delhi
  • Top Hotel Management Colleges in Hyderabad
  • Top Hotel Management Colleges in Mumbai
  • Top Hotel Management Colleges in Tamil Nadu
  • Top Hotel Management Colleges in Maharashtra
  • B.Sc Hotel Management
  • Hotel Management
  • Diploma in Hotel Management and Catering Technology

Diploma Colleges

  • Top Diploma Colleges in Maharashtra
  • UPSC IAS 2024
  • SSC CGL 2024
  • IBPS RRB 2024
  • Previous Year Sample Papers
  • Free Competition E-books
  • Sarkari Result
  • QnA- Get your doubts answered
  • UPSC Previous Year Sample Papers
  • CTET Previous Year Sample Papers
  • SBI Clerk Previous Year Sample Papers
  • NDA Previous Year Sample Papers

Upcoming Events

  • NDA Application Form 2024
  • UPSC IAS Application Form 2024
  • CDS Application Form 2024
  • CTET Admit card 2024
  • HP TET Result 2023
  • SSC GD Constable Admit Card 2024
  • UPTET Notification 2024
  • SBI Clerk Result 2024

Other Exams

  • SSC CHSL 2024
  • UP PCS 2024
  • UGC NET 2024
  • RRB NTPC 2024
  • IBPS PO 2024
  • IBPS Clerk 2024
  • IBPS SO 2024
  • Top University in USA
  • Top University in Canada
  • Top University in Ireland
  • Top Universities in UK
  • Top Universities in Australia
  • Best MBA Colleges in Abroad
  • Business Management Studies Colleges

Top Countries

  • Study in USA
  • Study in UK
  • Study in Canada
  • Study in Australia
  • Study in Ireland
  • Study in Germany
  • Study in China
  • Study in Europe

Student Visas

  • Student Visa Canada
  • Student Visa UK
  • Student Visa USA
  • Student Visa Australia
  • Student Visa Germany
  • Student Visa New Zealand
  • Student Visa Ireland
  • CUET PG 2025
  • IGNOU B.Ed Admission 2024
  • DU Admission 2024
  • UP B.Ed JEE 2024
  • LPU NEST 2024
  • IIT JAM 2025
  • AP OAMDC 2024
  • Universities in India
  • Top Universities in India 2024
  • Top Colleges in India
  • Top Universities in Uttar Pradesh 2024
  • Top Universities in Bihar
  • Top Universities in Madhya Pradesh 2024
  • Top Universities in Tamil Nadu 2024
  • Central Universities in India
  • CUET DU Cut off 2024
  • IGNOU Date Sheet 2024
  • CUET DU CSAS Portal 2024
  • CUET Response Sheet 2024
  • CUET Result 2024
  • CUET Participating Universities 2024
  • CUET Previous Year Question Paper
  • IGNOU Result 2024
  • E-Books and Sample Papers
  • CUET College Predictor 2024
  • CUET Exam Date 2024
  • CUET Cut Off 2024
  • NIRF Ranking 2024
  • IGNOU Exam Form 2024
  • CUET PG Counselling 2024
  • CUET Answer Key 2024

Engineering Preparation

  • Knockout JEE Main 2024
  • Test Series JEE Main 2024
  • JEE Main 2024 Rank Booster

Medical Preparation

  • Knockout NEET 2024
  • Test Series NEET 2024
  • Rank Booster NEET 2024

Online Courses

  • JEE Main One Month Course
  • NEET One Month Course
  • IBSAT Free Mock Tests
  • IIT JEE Foundation Course
  • Knockout BITSAT 2024
  • Career Guidance Tool

Top Streams

  • IT & Software Certification Courses
  • Engineering and Architecture Certification Courses
  • Programming And Development Certification Courses
  • Business and Management Certification Courses
  • Marketing Certification Courses
  • Health and Fitness Certification Courses
  • Design Certification Courses

Specializations

  • Digital Marketing Certification Courses
  • Cyber Security Certification Courses
  • Artificial Intelligence Certification Courses
  • Business Analytics Certification Courses
  • Data Science Certification Courses
  • Cloud Computing Certification Courses
  • Machine Learning Certification Courses
  • View All Certification Courses
  • UG Degree Courses
  • PG Degree Courses
  • Short Term Courses
  • Free Courses
  • Online Degrees and Diplomas
  • Compare Courses

Top Providers

  • Coursera Courses
  • Udemy Courses
  • Edx Courses
  • Swayam Courses
  • upGrad Courses
  • Simplilearn Courses
  • Great Learning Courses

Solar Energy Essay

All life on the planet depends directly or indirectly on solar energy, which we receive from the sun in the form of heat and light. It has some advantages and disadvantages. Here are a few sample essays on ‘solar energy.’

100 Words Essay On Solar Energy

Solar energy is the energy we derive from the sun through heat and light. Its production and use have no detrimental effects on the environment, making it "clean" and "green" energy. In our daily lives, solar energy is used for various purposes, including heating water in considerable reservoirs to conserve resources and electricity, cooking food in solar cookers, and generating electricity. Its applications can be a blessing for people living in remote corners of the world. Solar energy will be a better option for supplying energy needs in the future, even though its use is currently restricted and not widely adopted by the general public.

Solar Energy Essay

200 Words Essay On Solar Energy

All life on Earth receives its energy from the sun. Solar energy is what we get from the sun; it comes to us in the form of tiny light particles called photons. All types of microorganisms and single-celled organisms were created with the help of solar energy, and plants have been using this energy since the beginning of time. As a result, every living thing on Earth is directly or indirectly dependent on the sun. Since solar energy is entirely renewable, it is available as long as there is sunlight. Because no harmful gases, chemicals, or fly ash are produced, it is also pollution-free. Using photovoltaic cells, solar energy can be transformed into thermal or electrical energy. Solar energy has no production costs.

But there are some drawbacks to solar energy. For instance, solar energy can be harnessed for various activities only during the day when there is sufficient sunlight available. When compared to conventional power plants with the same capacity, the cost of installing solar energy panels is very high, and the amount of energy produced here is very low. However, as science and technology advance, we can harness solar energy and use it as our primary energy source.

500 Words Essay On Solar Energy

Life on earth is impossible without the sun and the energy it generates. Humans are no different from other organisms on this planet in that we are entirely dependent on the sun's energy, also known as solar energy; this dependence dates back to the beginning of time.

Solar Energy

We have the privilege of using solar energy as long as the sun is shining because it is a renewable power source. It is utilised by photosynthetic organisms like plants and some bacteria as "producers," who then supply food to other organisms at all levels of the food chain, known as "consumers." Reptiles and other cold-blooded animals run on solar energy daily. Humans have utilised it for many purposes, such as cooking and drying, and in the present day, we are using it to produce electricity.

Thermal radiation and light energy are provided by solar energy as well. These two energies are equally crucial.

The Earth is surrounded by solar radiation, which causes the oceans (which cover 71% of the planet) to evaporate due to the heat radiation. The vapour then circulates in a process known as the "water cycle," which in turn controls the planet's temperature. Solar energy also melts ice caps and glaciers, releasing potable water into the environment. Since everyone relies on light to keep things moving, the use of light is inexplicable.

There are several benefits and drawbacks to using solar energy.

Advantages of Solar Energy

Solar energy is completely free to use and requires no work to produce.

Solar energy applications can be used to generate electricity in rural and remote areas where conventional electricity is difficult to come by.

The harnessing and production of this clean energy have no adverse effects on the environment.

We have an endless supply of this energy as long as the sun continues to shine. It is entirely renewable. This is a short time compared to fossil fuel, which lasts for only 20 to 30 years.

Solar energy can charge calculators and solar cell batteries in large quantities.

Disadvantages of Solar Energy

Although it is free to produce, the machinery needed to harness it is quite expensive.

The maintenance and labour charges are costly for the installations.

For the installations to even produce enough energy, a very large area is needed.

Compared to traditional energy sources like fossil fuels, the amount of energy that has been harnessed is minimal.

Solar energy can be harnessed for various purposes during the day, when there is a lot of sunlight available.

My Experience With Solar Energy

I recently went to a science fair where I saw various solar energy projects, such as photoreceptive power cells, solar water heaters, and solar cookers, that produced electricity and used other types of solar energy. I realised there that solar energy has a broad range of applications, is made at a very low cost per individual, and protects our environment from pollution. It was also a good idea to encourage my village to use solar water heaters and panels. And finally, to promote clean energy, we must all move forward with the same concept.

Applications for Admissions are open.

Tallentex 2025 - ALLEN's Talent Encouragement Exam

Tallentex 2025 - ALLEN's Talent Encouragement Exam

Register for Tallentex '25 - One of The Biggest Talent Encouragement Exam

Aakash iACST Scholarship Test 2024

Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

JEE Main Important Chemistry formulas

JEE Main Important Chemistry formulas

As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters

JEE Main Important Physics formulas

JEE Main Important Physics formulas

As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters

TOEFL ® Registrations 2024

TOEFL ® Registrations 2024

Accepted by more than 11,000 universities in over 150 countries worldwide

PTE Exam 2024 Registrations

PTE Exam 2024 Registrations

Register now for PTE & Save 5% on English Proficiency Tests with ApplyShop Gift Cards

Download Careers360 App's

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

student

Certifications

student

We Appeared in

Economic Times

  • Energy Resources
  • Renewable Energy
  • Renewable Energy Technologies
  • Solar Energy

Solar Energy Technology

  • January 2020

Udara Arachchige at University of Sri Jayewardenepura

  • University of Sri Jayewardenepura

Sumedha R.G Weliwaththage at University of Sri Jayewardenepura

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Mohamed Atef

Wahbi Albasyouni

  • Dr S Prabakaran

Ashokkumar Nagarajan

  • Ayatallah Sherif
  • Ali Mokhtar
  • Exzell Liantara
  • Irsan Fahmi Almutarihan

Yepy Komaril Sofi’i

  • Manar Atatri

Basem Abu Zneid

  • Pramod Guarav
  • Amruta Salavi
  • Sneha Pavane
  • Priya Kamble

Amina Tahri

  • Sanae Boughanbour

Peter Onu

  • RENEW SUST ENERG REV

Thomas T.D. Tran

  • V. K. Karra

B P Patil

  • Saloni Atre

Shahrouz Abolhosseini

  • Jorn Altmann
  • Tristan Deppe
  • Jeremy N. Munday
  • V. Renugadevi

Farhan Hyder

  • K. Sudhakar

Rizalman Mamat

  • Bancha Sreewirote
  • Akeratana Noppakant
  • Chaichan Pothisarn
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Home / Essay Samples / Environment / Ecology / Solar Energy

Solar Energy Essay Examples

Science as a human endeavour: environmental issues – solar panels.

As science progresses governments and countries are turning to renewable energy supplies to minimise their impact on the environment, as well as to conserve finite resources such as coal and natural gas. As of 2015 86% of Australia’s energy was derived from fossil fuels. The...

Comparison Between Solar Power and Wind Power

With the growing global concern about environmental sustainability and the need to shift towards renewable energy sources, solar power and wind power have emerged as two prominent contenders. Both solar and wind power technologies offer clean and abundant energy, but they have unique characteristics and...

Solar Energy: Advantages and Disadvantages

Solar energy, derived from the radiant power of the sun, has emerged as a transformative solution in the pursuit of cleaner, more sustainable energy alternatives. This essay delves into the intricate fabric of solar energy, exploring its multifaceted advantages that range from environmental benefits to...

A Project Report on Two Wheeler Solar Hybrid Vehicle

Hybrid motor vehicles, runs using conventional and non-conventional energy sources that are petrol and solar energy. The aim is to fabricate and optimize a two stroke engine vehicle powered by both battery and gasoline. It has greater advantage over previously used gasoline engine and that...

The Sun Powered Warm Innovation

These days, the worldwide temperature alteration and green gas impact are the most vital perils for the Earth's future. It appears that the ideal arrangement is utilizing sustainable power source assets to stop their unfavorable effects on human life. The sun oriented asset has been...

Qualitative and Quantitative Examination of Solar Home System

Four out of five people on this planet simply turn a switch. The lights come on, a computer powers up, hot water flows from a tap or machines start humming. One out of five, however, does not have a switch to turn, since he or...

An Overview of Round Solar Panels 

Solar Panels are a great innovation, but they are not necessarily new technology. They have been around for years, with the solar calculators being existent since the 70s. However, this technology has not been utilized and marketed to its full potential until the 20th century....

Using Renewable Power Sources in the UK: Wind and Solar Energy

Over the past ten years, the UK has increased the use of renewable power sources, as the non-renewable source is steeply decreasing and will soon finish. Energy is “the power from something such as electricity that can do work, such as providing light”. Renewable energy...

Literature Review of Autonomous Solar Power Systems

Due to the low availability of power supply in numerous regions, especially rural areas; some people opt for living autonomously without being dependent on the traditional power supplies. Thus, the term “off the grid” has been created. It is referred as “stand-alone power system”, and...

Solar and Wind Energy in the United Kingdom

Renewable energy is a better, safer option for the future of the world. In the UK, people are debating whether wind energy is better than solar energy or if solar energy is better than wind energy, this goes to show that people are looking for...

Trying to find an excellent essay sample but no results?

Don’t waste your time and get a professional writer to help!

You may also like

  • Plastic Bags Essays
  • Water Pollution Essays
  • Tornado Essays
  • Pollution Essays
  • Deforestation Essays
  • Global Warming Essays
  • Sustainability Essays
  • Water Essays
  • Trees Essays
  • Beach Essays

samplius.com uses cookies to offer you the best service possible.By continuing we’ll assume you board with our cookie policy .--> -->