Chapman University Digital Commons

Home > Dissertations and Theses > Computational and Data Sciences (PhD) Dissertations

Computational and Data Sciences (PhD) Dissertations

Below is a selection of dissertations from the Doctor of Philosophy in Computational and Data Sciences program in Schmid College that have been included in Chapman University Digital Commons. Additional dissertations from years prior to 2019 are available through the Leatherby Libraries' print collection or in Proquest's Dissertations and Theses database.

Dissertations from 2024 2024

Advancement in In-Silico Drug Discovery from Virtual Screening Molecular Dockings to De-Novo Drug Design Transformer-based Generative AI and Reinforcement Learning , Dony Ang

A Novel Correction for the Multivariate Ljung-Box Test , Minhao Huang

Medical Image Analysis Based on Graph Machine Learning and Variational Methods , Sina Mohammadi

Machine Learning and Geostatistical Approaches for Discovery of Weather and Climate Events Related to El Niño Phenomena , Sachi Perera

Global to Glocal: A Confluence of Data Science and Earth Observations in the Advancement of the SDGs , Rejoice Thomas

Dissertations from 2023 2023

Computational Analysis of Antibody Binding Mechanisms to the Omicron RBD of SARS-CoV-2 Spike Protein: Identification of Epitopes and Hotspots for Developing Effective Therapeutic Strategies , Mohammed Alshahrani

Integration of Computer Algebra Systems and Machine Learning in the Authoring of the SANYMS Intelligent Tutoring System , Sam Ford

Voluntary Action and Conscious Intention , Jake Gavenas

Random Variable Spaces: Mathematical Properties and an Extension to Programming Computable Functions , Mohammed Kurd-Misto

Computational Modeling of Superconductivity from the Set of Time-Dependent Ginzburg-Landau Equations for Advancements in Theory and Applications , Iris Mowgood

Application of Machine Learning Algorithms for Elucidation of Biological Networks from Time Series Gene Expression Data , Krupa Nagori

Stochastic Processes and Multi-Resolution Analysis: A Trigonometric Moment Problem Approach and an Analysis of the Expenditure Trends for Diabetic Patients , Isaac Nwi-Mozu

Applications of Causal Inference Methods for the Estimation of Effects of Bone Marrow Transplant and Prescription Drugs on Survival of Aplastic Anemia Patients , Yesha M. Patel

Causal Inference and Machine Learning Methods in Parkinson's Disease Data Analysis , Albert Pierce

Causal Inference Methods for Estimation of Survival and General Health Status Measures of Alzheimer’s Disease Patients , Ehsan Yaghmaei

Dissertations from 2022 2022

Computational Approaches to Facilitate Automated Interchange between Music and Art , Rao Hamza Ali

Causal Inference in Psychology and Neuroscience: From Association to Causation , Dehua Liang

Advances in NLP Algorithms on Unstructured Medical Notes Data and Approaches to Handling Class Imbalance Issues , Hanna Lu

Novel Techniques for Quantifying Secondhand Smoke Diffusion into Children's Bedroom , Sunil Ramchandani

Probing the Boundaries of Human Agency , Sook Mun Wong

Dissertations from 2021 2021

Predicting Eye Movement and Fixation Patterns on Scenic Images Using Machine Learning for Children with Autism Spectrum Disorder , Raymond Anden

Forecasting the Prices of Cryptocurrencies using a Novel Parameter Optimization of VARIMA Models , Alexander Barrett

Applications of Machine Learning to Facilitate Software Engineering and Scientific Computing , Natalie Best

Exploring Behaviors of Software Developers and Their Code Through Computational and Statistical Methods , Elia Eiroa Lledo

Assessing the Re-Identification Risk in ECG Datasets and an Application of Privacy Preserving Techniques in ECG Analysis , Arin Ghazarian

Multi-Modal Data Fusion, Image Segmentation, and Object Identification using Unsupervised Machine Learning: Conception, Validation, Applications, and a Basis for Multi-Modal Object Detection and Tracking , Nicholas LaHaye

Machine-Learning-Based Approach to Decoding Physiological and Neural Signals , Elnaz Lashgari

Learning-Based Modeling of Weather and Climate Events Related To El Niño Phenomenon via Differentiable Programming and Empirical Decompositions , Justin Le

Quantum State Estimation and Tracking for Superconducting Processors Using Machine Learning , Shiva Lotfallahzadeh Barzili

Novel Applications of Statistical and Machine Learning Methods to Analyze Trial-Level Data from Cognitive Measures , Chelsea Parlett

Optimal Analytical Methods for High Accuracy Cardiac Disease Classification and Treatment Based on ECG Data , Jianwei Zheng

Dissertations from 2020 2020

Development of Integrated Machine Learning and Data Science Approaches for the Prediction of Cancer Mutation and Autonomous Drug Discovery of Anti-Cancer Therapeutic Agents , Steven Agajanian

Allocation of Public Resources: Bringing Order to Chaos , Lance Clifner

A Novel Correction for the Adjusted Box-Pierce Test — New Risk Factors for Emergency Department Return Visits within 72 hours for Children with Respiratory Conditions — General Pediatric Model for Understanding and Predicting Prolonged Length of Stay , Sidy Danioko

A Computational and Experimental Examination of the FCC Incentive Auction , Logan Gantner

Exploring the Employment Landscape for Individuals with Autism Spectrum Disorders using Supervised and Unsupervised Machine Learning , Kayleigh Hyde

Integrated Machine Learning and Bioinformatics Approaches for Prediction of Cancer-Driving Gene Mutations , Oluyemi Odeyemi

On Quantum Effects of Vector Potentials and Generalizations of Functional Analysis , Ismael L. Paiva

Long Term Ground Based Precipitation Data Analysis: Spatial and Temporal Variability , Luciano Rodriguez

Gaining Computational Insight into Psychological Data: Applications of Machine Learning with Eating Disorders and Autism Spectrum Disorder , Natalia Rosenfield

Connecting the Dots for People with Autism: A Data-driven Approach to Designing and Evaluating a Global Filter , Viseth Sean

Novel Statistical and Machine Learning Methods for the Forecasting and Analysis of Major League Baseball Player Performance , Christopher Watkins

Dissertations from 2019 2019

Contributions to Variable Selection in Complexly Sampled Case-control Models, Epidemiology of 72-hour Emergency Department Readmission, and Out-of-site Migration Rate Estimation Using Pseudo-tagged Longitudinal Data , Kyle Anderson

Bias Reduction in Machine Learning Classifiers for Spatiotemporal Analysis of Coral Reefs using Remote Sensing Images , Justin J. Gapper

Estimating Auction Equilibria using Individual Evolutionary Learning , Kevin James

Employing Earth Observations and Artificial Intelligence to Address Key Global Environmental Challenges in Service of the SDGs , Wenzhao Li

Image Restoration using Automatic Damaged Regions Detection and Machine Learning-Based Inpainting Technique , Chloe Martin-King

Theses from 2017 2017

Optimized Forecasting of Dominant U.S. Stock Market Equities Using Univariate and Multivariate Time Series Analysis Methods , Michael Schwartz

  • Collections
  • Disciplines

Advanced Search

  • Notify me via email or RSS

Author Corner

  • Submit Research
  • Rights and Terms of Use
  • Leatherby Libraries
  • Chapman University

ISSN 2572-1496

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

dissertation on data science

Research Topics & Ideas: Data Science

Dissertation Coaching

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . These topic ideas provided here are intentionally broad and generic , so keep in mind that you will need to develop them further. Nevertheless, they should inspire some ideas for your project.

Research topics and ideas about data science and big data analytics

Data Science-Related Research Topics

  • Developing machine learning models for real-time fraud detection in online transactions.
  • The use of big data analytics in predicting and managing urban traffic flow.
  • Investigating the effectiveness of data mining techniques in identifying early signs of mental health issues from social media usage.
  • The application of predictive analytics in personalizing cancer treatment plans.
  • Analyzing consumer behavior through big data to enhance retail marketing strategies.
  • The role of data science in optimizing renewable energy generation from wind farms.
  • Developing natural language processing algorithms for real-time news aggregation and summarization.
  • The application of big data in monitoring and predicting epidemic outbreaks.
  • Investigating the use of machine learning in automating credit scoring for microfinance.
  • The role of data analytics in improving patient care in telemedicine.
  • Developing AI-driven models for predictive maintenance in the manufacturing industry.
  • The use of big data analytics in enhancing cybersecurity threat intelligence.
  • Investigating the impact of sentiment analysis on brand reputation management.
  • The application of data science in optimizing logistics and supply chain operations.
  • Developing deep learning techniques for image recognition in medical diagnostics.
  • The role of big data in analyzing climate change impacts on agricultural productivity.
  • Investigating the use of data analytics in optimizing energy consumption in smart buildings.
  • The application of machine learning in detecting plagiarism in academic works.
  • Analyzing social media data for trends in political opinion and electoral predictions.
  • The role of big data in enhancing sports performance analytics.
  • Developing data-driven strategies for effective water resource management.
  • The use of big data in improving customer experience in the banking sector.
  • Investigating the application of data science in fraud detection in insurance claims.
  • The role of predictive analytics in financial market risk assessment.
  • Developing AI models for early detection of network vulnerabilities.

Research Topic Mega List

Data Science Research Ideas (Continued)

  • The application of big data in public transportation systems for route optimization.
  • Investigating the impact of big data analytics on e-commerce recommendation systems.
  • The use of data mining techniques in understanding consumer preferences in the entertainment industry.
  • Developing predictive models for real estate pricing and market trends.
  • The role of big data in tracking and managing environmental pollution.
  • Investigating the use of data analytics in improving airline operational efficiency.
  • The application of machine learning in optimizing pharmaceutical drug discovery.
  • Analyzing online customer reviews to inform product development in the tech industry.
  • The role of data science in crime prediction and prevention strategies.
  • Developing models for analyzing financial time series data for investment strategies.
  • The use of big data in assessing the impact of educational policies on student performance.
  • Investigating the effectiveness of data visualization techniques in business reporting.
  • The application of data analytics in human resource management and talent acquisition.
  • Developing algorithms for anomaly detection in network traffic data.
  • The role of machine learning in enhancing personalized online learning experiences.
  • Investigating the use of big data in urban planning and smart city development.
  • The application of predictive analytics in weather forecasting and disaster management.
  • Analyzing consumer data to drive innovations in the automotive industry.
  • The role of data science in optimizing content delivery networks for streaming services.
  • Developing machine learning models for automated text classification in legal documents.
  • The use of big data in tracking global supply chain disruptions.
  • Investigating the application of data analytics in personalized nutrition and fitness.
  • The role of big data in enhancing the accuracy of geological surveying for natural resource exploration.
  • Developing predictive models for customer churn in the telecommunications industry.
  • The application of data science in optimizing advertisement placement and reach.

Research topic evaluator

Recent Data Science-Related Studies

Below, we’ve included a selection of recent studies to help refine your thinking. These are actual studies,  so they can provide some useful insight as to what a research topic looks like in practice.

  • Data Science in Healthcare: COVID-19 and Beyond (Hulsen, 2022)
  • Auto-ML Web-application for Automated Machine Learning Algorithm Training and evaluation (Mukherjee & Rao, 2022)
  • Survey on Statistics and ML in Data Science and Effect in Businesses (Reddy et al., 2022)
  • Visualization in Data Science VDS @ KDD 2022 (Plant et al., 2022)
  • An Essay on How Data Science Can Strengthen Business (Santos, 2023)
  • A Deep study of Data science related problems, application and machine learning algorithms utilized in Data science (Ranjani et al., 2022)
  • You Teach WHAT in Your Data Science Course?!? (Posner & Kerby-Helm, 2022)
  • Statistical Analysis for the Traffic Police Activity: Nashville, Tennessee, USA (Tufail & Gul, 2022)
  • Data Management and Visual Information Processing in Financial Organization using Machine Learning (Balamurugan et al., 2022)
  • A Proposal of an Interactive Web Application Tool QuickViz: To Automate Exploratory Data Analysis (Pitroda, 2022)
  • Applications of Data Science in Respective Engineering Domains (Rasool & Chaudhary, 2022)
  • Jupyter Notebooks for Introducing Data Science to Novice Users (Fruchart et al., 2022)
  • Towards a Systematic Review of Data Science Programs: Themes, Courses, and Ethics (Nellore & Zimmer, 2022)
  • Application of data science and bioinformatics in healthcare technologies (Veeranki & Varshney, 2022)
  • TAPS Responsibility Matrix: A tool for responsible data science by design (Urovi et al., 2023)
  • Data Detectives: A Data Science Program for Middle Grade Learners (Thompson & Irgens, 2022)
  • MACHINE LEARNING FOR NON-MAJORS: A WHITE BOX APPROACH (Mike & Hazzan, 2022)
  • COMPONENTS OF DATA SCIENCE AND ITS APPLICATIONS (Paul et al., 2022)
  • Analysis on the Application of Data Science in Business Analytics (Wang, 2022)

Get 1-On-1 Help

Find the perfect research topic.

How To Choose A Research Topic: 5 Key Criteria

How To Choose A Research Topic: 5 Key Criteria

How To Choose A Research Topic Step-By-Step Tutorial With Examples + Free Topic...

Research Topics & Ideas: Automation & Robotics

Research Topics & Ideas: Automation & Robotics

A comprehensive list of automation and robotics-related research topics. Includes free access to a webinar and research topic evaluator.

Research Topics & Ideas: Sociology

Research Topics & Ideas: Sociology

Research Topics & Ideas: Sociology 50 Topic Ideas To Kickstart Your Research...

Research Topics & Ideas: Public Health & Epidemiology

Research Topics & Ideas: Public Health & Epidemiology

A comprehensive list of public health-related research topics. Includes free access to a webinar and research topic evaluator.

Research Topics & Ideas: Neuroscience

Research Topics & Ideas: Neuroscience

Research Topics & Ideas: Neuroscience 50 Topic Ideas To Kickstart Your Research...

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

Krishna Kumar Mishra

I have to submit dissertation. can I get any help

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

dissertation on data science

  • Print Friendly

DigitalCommons@Kennesaw State University

Home > CCSE > Data Science and Analytics > PhD DSA

Doctor of Data Science and Analytics Dissertations

The PhD Website

The Ph.D. in Data Science and Analytics is an advanced degree with a dual focus of application and research - where students will engage in real world business problems, which will inform and guide their research interests.

We launched the first formal PhD program in Data Science in 2015. Our program sits at the intersection of computer science, statistics, mathematics, and business. Our students engage in relevant research with faculty from across our eleven colleges. As one of the institutions on the forefront of the development of data science as an academic discipline, we are committed to developing the next generation of Data Science leaders, researchers, and educators. Culturally, we are committed to the discipline of Data Science, through ethical practices, attention to fairness, to a diverse student body, to academic excellence, and research which makes positive contributions to our local, regional, and global community. -Sherry Ni, Director, Ph.D. in Data Science and Analytics

This degree will train individuals to translate and facilitate new innovative research, structured and unstructured, complex data into information to improve decision making. This curriculum includes heavy emphasis on programming, data mining, statistical modeling, and the mathematical foundations to support these concepts. Importantly, the program also emphasizes communication skills – both oral and written – as well as application and tying results to business and research problems.

Need to Submit Your Dissertation? Submit Here!

Dissertations from 2024 2024.

A Holistic and Collaborative Behavioral Health Detection Framework Using Sensitive Police Narratives , Martin Keagan Wynne Brown

MEDICAL IMAGING DATASET MANAGEMENT LEVERAGING DEEP LEARNING FRAMEWORKS IN BREAST CANCER SCREENING , Inchan Hwang

Multi-Modality Transformer for E-Commerce: Inferring User Purchase Intention to Bridge the Query-Product Gap , Srivatsa Mallapragada

Innovative Approaches for Identifying and Reducing Disparity in Machine Learning Model Performance – Bridging the Gap in Binary Classification for Health Informatics , Linglin Zhang

Dissertations from 2023 2023

Quantification of Various Types of Biases in Large Language Models , Sudhashree Sayenju

Dissertations from 2022 2022

Appley: Approximate Shapley Values for Model Explainability in Linear Time , Md Shafiul Alam

Ethical Analytics: A Framework for a Practically-Oriented Sub-Discipline of AI Ethics , Jonathan Boardman

Novel Instance-Level Weighted Loss Function for Imbalanced Learning , Trent Geisler

Debiasing Cyber Incidents – Correcting for Reporting Delays and Under-reporting , Seema Sangari

Dissertations from 2021 2021

Integrated Machine Learning Approaches to Improve Classification performance and Feature Extraction Process for EEG Dataset , Mohammad Masum

A Distance-Based Clustering Framework for Categorical Time Series: A Case Study in Episodes of Care Healthcare Delivery System , Lauren Staples

Dissertations from 2020 2020

A CREDIT ANALYSIS OF THE UNBANKED AND UNDERBANKED: AN ARGUMENT FOR ALTERNATIVE DATA , Edwin Baidoo

Quantitatively Motivated Model Development Framework: Downstream Analysis Effects of Normalization Strategies , Jessica M. Rudd

Data-driven Investment Decisions in P2P Lending: Strategies of Integrating Credit Scoring and Profit Scoring , Yan Wang

A Novel Penalized Log-likelihood Function for Class Imbalance Problem , Lili Zhang

ATTACK AND DEFENSE IN SECURITY ANALYTICS , Yiyun Zhou

Dissertations from 2019 2019

One and Two-Step Estimation of Time Variant Parameters and Nonparametric Quantiles , Bogdan Gadidov

Biologically Interpretable, Integrative Deep Learning for Cancer Survival Analysis , Jie Hao

Deep Embedding Kernel , Linh Le

Ordinal HyperPlane Loss , Bob Vanderheyden

Advanced Search

  • Notify me via email or RSS
  • All Collections
  • Disciplines
  • Conferences
  • Faculty Works
  • Open Access
  • Research Support
  • Student Works
  • Data Science Homepage

Useful Links

  • Training Materials

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright DigitalCommons@Kennesaw State University ISSN: 2576-6805

data science Recently Published Documents

Total documents.

  • Latest Documents
  • Most Cited Documents
  • Contributed Authors
  • Related Sources
  • Related Keywords

Assessing the effects of fuel energy consumption, foreign direct investment and GDP on CO2 emission: New data science evidence from Europe & Central Asia

Documentation matters: human-centered ai system to assist data science code documentation in computational notebooks.

Computational notebooks allow data scientists to express their ideas through a combination of code and documentation. However, data scientists often pay attention only to the code, and neglect creating or updating their documentation during quick iterations. Inspired by human documentation practices learned from 80 highly-voted Kaggle notebooks, we design and implement Themisto, an automated documentation generation system to explore how human-centered AI systems can support human data scientists in the machine learning code documentation scenario. Themisto facilitates the creation of documentation via three approaches: a deep-learning-based approach to generate documentation for source code, a query-based approach to retrieve online API documentation for source code, and a user prompt approach to nudge users to write documentation. We evaluated Themisto in a within-subjects experiment with 24 data science practitioners, and found that automated documentation generation techniques reduced the time for writing documentation, reminded participants to document code they would have ignored, and improved participants’ satisfaction with their computational notebook.

Data science in the business environment: Insight management for an Executive MBA

Adventures in financial data science, gecoagent: a conversational agent for empowering genomic data extraction and analysis.

With the availability of reliable and low-cost DNA sequencing, human genomics is relevant to a growing number of end-users, including biologists and clinicians. Typical interactions require applying comparative data analysis to huge repositories of genomic information for building new knowledge, taking advantage of the latest findings in applied genomics for healthcare. Powerful technology for data extraction and analysis is available, but broad use of the technology is hampered by the complexity of accessing such methods and tools. This work presents GeCoAgent, a big-data service for clinicians and biologists. GeCoAgent uses a dialogic interface, animated by a chatbot, for supporting the end-users’ interaction with computational tools accompanied by multi-modal support. While the dialogue progresses, the user is accompanied in extracting the relevant data from repositories and then performing data analysis, which often requires the use of statistical methods or machine learning. Results are returned using simple representations (spreadsheets and graphics), while at the end of a session the dialogue is summarized in textual format. The innovation presented in this article is concerned with not only the delivery of a new tool but also our novel approach to conversational technologies, potentially extensible to other healthcare domains or to general data science.

Differentially Private Medical Texts Generation Using Generative Neural Networks

Technological advancements in data science have offered us affordable storage and efficient algorithms to query a large volume of data. Our health records are a significant part of this data, which is pivotal for healthcare providers and can be utilized in our well-being. The clinical note in electronic health records is one such category that collects a patient’s complete medical information during different timesteps of patient care available in the form of free-texts. Thus, these unstructured textual notes contain events from a patient’s admission to discharge, which can prove to be significant for future medical decisions. However, since these texts also contain sensitive information about the patient and the attending medical professionals, such notes cannot be shared publicly. This privacy issue has thwarted timely discoveries on this plethora of untapped information. Therefore, in this work, we intend to generate synthetic medical texts from a private or sanitized (de-identified) clinical text corpus and analyze their utility rigorously in different metrics and levels. Experimental results promote the applicability of our generated data as it achieves more than 80\% accuracy in different pragmatic classification problems and matches (or outperforms) the original text data.

Impact on Stock Market across Covid-19 Outbreak

Abstract: This paper analysis the impact of pandemic over the global stock exchange. The stock listing values are determined by variety of factors including the seasonal changes, catastrophic calamities, pandemic, fiscal year change and many more. This paper significantly provides analysis on the variation of listing price over the world-wide outbreak of novel corona virus. The key reason to imply upon this outbreak was to provide notion on underlying regulation of stock exchanges. Daily closing prices of the stock indices from January 2017 to January 2022 has been utilized for the analysis. The predominant feature of the research is to analyse the fact that does global economy downfall impacts the financial stock exchange. Keywords: Stock Exchange, Matplotlib, Streamlit, Data Science, Web scrapping.

Information Resilience: the nexus of responsible and agile approaches to information use

AbstractThe appetite for effective use of information assets has been steadily rising in both public and private sector organisations. However, whether the information is used for social good or commercial gain, there is a growing recognition of the complex socio-technical challenges associated with balancing the diverse demands of regulatory compliance and data privacy, social expectations and ethical use, business process agility and value creation, and scarcity of data science talent. In this vision paper, we present a series of case studies that highlight these interconnected challenges, across a range of application areas. We use the insights from the case studies to introduce Information Resilience, as a scaffold within which the competing requirements of responsible and agile approaches to information use can be positioned. The aim of this paper is to develop and present a manifesto for Information Resilience that can serve as a reference for future research and development in relevant areas of responsible data management.

qEEG Analysis in the Diagnosis of Alzheimers Disease; a Comparison of Functional Connectivity and Spectral Analysis

Alzheimers disease (AD) is a brain disorder that is mainly characterized by a progressive degeneration of neurons in the brain, causing a decline in cognitive abilities and difficulties in engaging in day-to-day activities. This study compares an FFT-based spectral analysis against a functional connectivity analysis based on phase synchronization, for finding known differences between AD patients and Healthy Control (HC) subjects. Both of these quantitative analysis methods were applied on a dataset comprising bipolar EEG montages values from 20 diagnosed AD patients and 20 age-matched HC subjects. Additionally, an attempt was made to localize the identified AD-induced brain activity effects in AD patients. The obtained results showed the advantage of the functional connectivity analysis method compared to a simple spectral analysis. Specifically, while spectral analysis could not find any significant differences between the AD and HC groups, the functional connectivity analysis showed statistically higher synchronization levels in the AD group in the lower frequency bands (delta and theta), suggesting that the AD patients brains are in a phase-locked state. Further comparison of functional connectivity between the homotopic regions confirmed that the traits of AD were localized in the centro-parietal and centro-temporal areas in the theta frequency band (4-8 Hz). The contribution of this study is that it applies a neural metric for Alzheimers detection from a data science perspective rather than from a neuroscience one. The study shows that the combination of bipolar derivations with phase synchronization yields similar results to comparable studies employing alternative analysis methods.

Big Data Analytics for Long-Term Meteorological Observations at Hanford Site

A growing number of physical objects with embedded sensors with typically high volume and frequently updated data sets has accentuated the need to develop methodologies to extract useful information from big data for supporting decision making. This study applies a suite of data analytics and core principles of data science to characterize near real-time meteorological data with a focus on extreme weather events. To highlight the applicability of this work and make it more accessible from a risk management perspective, a foundation for a software platform with an intuitive Graphical User Interface (GUI) was developed to access and analyze data from a decommissioned nuclear production complex operated by the U.S. Department of Energy (DOE, Richland, USA). Exploratory data analysis (EDA), involving classical non-parametric statistics, and machine learning (ML) techniques, were used to develop statistical summaries and learn characteristic features of key weather patterns and signatures. The new approach and GUI provide key insights into using big data and ML to assist site operation related to safety management strategies for extreme weather events. Specifically, this work offers a practical guide to analyzing long-term meteorological data and highlights the integration of ML and classical statistics to applied risk and decision science.

Export Citation Format

Share document.

Machine Learning - CMU

PhD Dissertations

PhD Dissertations

[all are .pdf files].

Neural processes underlying cognitive control during language production (unavailable) Tara Pirnia, 2024

The Neurodynamic Basis of Real World Face Perception Arish Alreja, 2024

Towards More Powerful Graph Representation Learning Lingxiao Zhao, 2024

Robust Machine Learning: Detection, Evaluation and Adaptation Under Distribution Shift Saurabh Garg, 2024

UNDERSTANDING, FORMALLY CHARACTERIZING, AND ROBUSTLY HANDLING REAL-WORLD DISTRIBUTION SHIFT Elan Rosenfeld, 2024

Representing Time: Towards Pragmatic Multivariate Time Series Modeling Cristian Ignacio Challu, 2024

Foundations of Multisensory Artificial Intelligence Paul Pu Liang, 2024

Advancing Model-Based Reinforcement Learning with Applications in Nuclear Fusion Ian Char, 2024

Learning Models that Match Jacob Tyo, 2024

Improving Human Integration across the Machine Learning Pipeline Charvi Rastogi, 2024

Reliable and Practical Machine Learning for Dynamic Healthcare Settings Helen Zhou, 2023

Automatic customization of large-scale spiking network models to neuronal population activity (unavailable) Shenghao Wu, 2023

Estimation of BVk functions from scattered data (unavailable) Addison J. Hu, 2023

Rethinking object categorization in computer vision (unavailable) Jayanth Koushik, 2023

Advances in Statistical Gene Networks Jinjin Tian, 2023 Post-hoc calibration without distributional assumptions Chirag Gupta, 2023

The Role of Noise, Proxies, and Dynamics in Algorithmic Fairness Nil-Jana Akpinar, 2023

Collaborative learning by leveraging siloed data Sebastian Caldas, 2023

Modeling Epidemiological Time Series Aaron Rumack, 2023

Human-Centered Machine Learning: A Statistical and Algorithmic Perspective Leqi Liu, 2023

Uncertainty Quantification under Distribution Shifts Aleksandr Podkopaev, 2023

Probabilistic Reinforcement Learning: Using Data to Define Desired Outcomes, and Inferring How to Get There Benjamin Eysenbach, 2023

Comparing Forecasters and Abstaining Classifiers Yo Joong Choe, 2023

Using Task Driven Methods to Uncover Representations of Human Vision and Semantics Aria Yuan Wang, 2023

Data-driven Decisions - An Anomaly Detection Perspective Shubhranshu Shekhar, 2023

Applied Mathematics of the Future Kin G. Olivares, 2023

METHODS AND APPLICATIONS OF EXPLAINABLE MACHINE LEARNING Joon Sik Kim, 2023

NEURAL REASONING FOR QUESTION ANSWERING Haitian Sun, 2023

Principled Machine Learning for Societally Consequential Decision Making Amanda Coston, 2023

Long term brain dynamics extend cognitive neuroscience to timescales relevant for health and physiology Maxwell B. Wang, 2023

Long term brain dynamics extend cognitive neuroscience to timescales relevant for health and physiology Darby M. Losey, 2023

Calibrated Conditional Density Models and Predictive Inference via Local Diagnostics David Zhao, 2023

Towards an Application-based Pipeline for Explainability Gregory Plumb, 2022

Objective Criteria for Explainable Machine Learning Chih-Kuan Yeh, 2022

Making Scientific Peer Review Scientific Ivan Stelmakh, 2022

Facets of regularization in high-dimensional learning: Cross-validation, risk monotonization, and model complexity Pratik Patil, 2022

Active Robot Perception using Programmable Light Curtains Siddharth Ancha, 2022

Strategies for Black-Box and Multi-Objective Optimization Biswajit Paria, 2022

Unifying State and Policy-Level Explanations for Reinforcement Learning Nicholay Topin, 2022

Sensor Fusion Frameworks for Nowcasting Maria Jahja, 2022

Equilibrium Approaches to Modern Deep Learning Shaojie Bai, 2022

Towards General Natural Language Understanding with Probabilistic Worldbuilding Abulhair Saparov, 2022

Applications of Point Process Modeling to Spiking Neurons (Unavailable) Yu Chen, 2021

Neural variability: structure, sources, control, and data augmentation Akash Umakantha, 2021

Structure and time course of neural population activity during learning Jay Hennig, 2021

Cross-view Learning with Limited Supervision Yao-Hung Hubert Tsai, 2021

Meta Reinforcement Learning through Memory Emilio Parisotto, 2021

Learning Embodied Agents with Scalably-Supervised Reinforcement Learning Lisa Lee, 2021

Learning to Predict and Make Decisions under Distribution Shift Yifan Wu, 2021

Statistical Game Theory Arun Sai Suggala, 2021

Towards Knowledge-capable AI: Agents that See, Speak, Act and Know Kenneth Marino, 2021

Learning and Reasoning with Fast Semidefinite Programming and Mixing Methods Po-Wei Wang, 2021

Bridging Language in Machines with Language in the Brain Mariya Toneva, 2021

Curriculum Learning Otilia Stretcu, 2021

Principles of Learning in Multitask Settings: A Probabilistic Perspective Maruan Al-Shedivat, 2021

Towards Robust and Resilient Machine Learning Adarsh Prasad, 2021

Towards Training AI Agents with All Types of Experiences: A Unified ML Formalism Zhiting Hu, 2021

Building Intelligent Autonomous Navigation Agents Devendra Chaplot, 2021

Learning to See by Moving: Self-supervising 3D Scene Representations for Perception, Control, and Visual Reasoning Hsiao-Yu Fish Tung, 2021

Statistical Astrophysics: From Extrasolar Planets to the Large-scale Structure of the Universe Collin Politsch, 2020

Causal Inference with Complex Data Structures and Non-Standard Effects Kwhangho Kim, 2020

Networks, Point Processes, and Networks of Point Processes Neil Spencer, 2020

Dissecting neural variability using population recordings, network models, and neurofeedback (Unavailable) Ryan Williamson, 2020

Predicting Health and Safety: Essays in Machine Learning for Decision Support in the Public Sector Dylan Fitzpatrick, 2020

Towards a Unified Framework for Learning and Reasoning Han Zhao, 2020

Learning DAGs with Continuous Optimization Xun Zheng, 2020

Machine Learning and Multiagent Preferences Ritesh Noothigattu, 2020

Learning and Decision Making from Diverse Forms of Information Yichong Xu, 2020

Towards Data-Efficient Machine Learning Qizhe Xie, 2020

Change modeling for understanding our world and the counterfactual one(s) William Herlands, 2020

Machine Learning in High-Stakes Settings: Risks and Opportunities Maria De-Arteaga, 2020

Data Decomposition for Constrained Visual Learning Calvin Murdock, 2020

Structured Sparse Regression Methods for Learning from High-Dimensional Genomic Data Micol Marchetti-Bowick, 2020

Towards Efficient Automated Machine Learning Liam Li, 2020

LEARNING COLLECTIONS OF FUNCTIONS Emmanouil Antonios Platanios, 2020

Provable, structured, and efficient methods for robustness of deep networks to adversarial examples Eric Wong , 2020

Reconstructing and Mining Signals: Algorithms and Applications Hyun Ah Song, 2020

Probabilistic Single Cell Lineage Tracing Chieh Lin, 2020

Graphical network modeling of phase coupling in brain activity (unavailable) Josue Orellana, 2019

Strategic Exploration in Reinforcement Learning - New Algorithms and Learning Guarantees Christoph Dann, 2019 Learning Generative Models using Transformations Chun-Liang Li, 2019

Estimating Probability Distributions and their Properties Shashank Singh, 2019

Post-Inference Methods for Scalable Probabilistic Modeling and Sequential Decision Making Willie Neiswanger, 2019

Accelerating Text-as-Data Research in Computational Social Science Dallas Card, 2019

Multi-view Relationships for Analytics and Inference Eric Lei, 2019

Information flow in networks based on nonstationary multivariate neural recordings Natalie Klein, 2019

Competitive Analysis for Machine Learning & Data Science Michael Spece, 2019

The When, Where and Why of Human Memory Retrieval Qiong Zhang, 2019

Towards Effective and Efficient Learning at Scale Adams Wei Yu, 2019

Towards Literate Artificial Intelligence Mrinmaya Sachan, 2019

Learning Gene Networks Underlying Clinical Phenotypes Under SNP Perturbations From Genome-Wide Data Calvin McCarter, 2019

Unified Models for Dynamical Systems Carlton Downey, 2019

Anytime Prediction and Learning for the Balance between Computation and Accuracy Hanzhang Hu, 2019

Statistical and Computational Properties of Some "User-Friendly" Methods for High-Dimensional Estimation Alnur Ali, 2019

Nonparametric Methods with Total Variation Type Regularization Veeranjaneyulu Sadhanala, 2019

New Advances in Sparse Learning, Deep Networks, and Adversarial Learning: Theory and Applications Hongyang Zhang, 2019

Gradient Descent for Non-convex Problems in Modern Machine Learning Simon Shaolei Du, 2019

Selective Data Acquisition in Learning and Decision Making Problems Yining Wang, 2019

Anomaly Detection in Graphs and Time Series: Algorithms and Applications Bryan Hooi, 2019

Neural dynamics and interactions in the human ventral visual pathway Yuanning Li, 2018

Tuning Hyperparameters without Grad Students: Scaling up Bandit Optimisation Kirthevasan Kandasamy, 2018

Teaching Machines to Classify from Natural Language Interactions Shashank Srivastava, 2018

Statistical Inference for Geometric Data Jisu Kim, 2018

Representation Learning @ Scale Manzil Zaheer, 2018

Diversity-promoting and Large-scale Machine Learning for Healthcare Pengtao Xie, 2018

Distribution and Histogram (DIsH) Learning Junier Oliva, 2018

Stress Detection for Keystroke Dynamics Shing-Hon Lau, 2018

Sublinear-Time Learning and Inference for High-Dimensional Models Enxu Yan, 2018

Neural population activity in the visual cortex: Statistical methods and application Benjamin Cowley, 2018

Efficient Methods for Prediction and Control in Partially Observable Environments Ahmed Hefny, 2018

Learning with Staleness Wei Dai, 2018

Statistical Approach for Functionally Validating Transcription Factor Bindings Using Population SNP and Gene Expression Data Jing Xiang, 2017

New Paradigms and Optimality Guarantees in Statistical Learning and Estimation Yu-Xiang Wang, 2017

Dynamic Question Ordering: Obtaining Useful Information While Reducing User Burden Kirstin Early, 2017

New Optimization Methods for Modern Machine Learning Sashank J. Reddi, 2017

Active Search with Complex Actions and Rewards Yifei Ma, 2017

Why Machine Learning Works George D. Montañez , 2017

Source-Space Analyses in MEG/EEG and Applications to Explore Spatio-temporal Neural Dynamics in Human Vision Ying Yang , 2017

Computational Tools for Identification and Analysis of Neuronal Population Activity Pengcheng Zhou, 2016

Expressive Collaborative Music Performance via Machine Learning Gus (Guangyu) Xia, 2016

Supervision Beyond Manual Annotations for Learning Visual Representations Carl Doersch, 2016

Exploring Weakly Labeled Data Across the Noise-Bias Spectrum Robert W. H. Fisher, 2016

Optimizing Optimization: Scalable Convex Programming with Proximal Operators Matt Wytock, 2016

Combining Neural Population Recordings: Theory and Application William Bishop, 2015

Discovering Compact and Informative Structures through Data Partitioning Madalina Fiterau-Brostean, 2015

Machine Learning in Space and Time Seth R. Flaxman, 2015

The Time and Location of Natural Reading Processes in the Brain Leila Wehbe, 2015

Shape-Constrained Estimation in High Dimensions Min Xu, 2015

Spectral Probabilistic Modeling and Applications to Natural Language Processing Ankur Parikh, 2015 Computational and Statistical Advances in Testing and Learning Aaditya Kumar Ramdas, 2015

Corpora and Cognition: The Semantic Composition of Adjectives and Nouns in the Human Brain Alona Fyshe, 2015

Learning Statistical Features of Scene Images Wooyoung Lee, 2014

Towards Scalable Analysis of Images and Videos Bin Zhao, 2014

Statistical Text Analysis for Social Science Brendan T. O'Connor, 2014

Modeling Large Social Networks in Context Qirong Ho, 2014

Semi-Cooperative Learning in Smart Grid Agents Prashant P. Reddy, 2013

On Learning from Collective Data Liang Xiong, 2013

Exploiting Non-sequence Data in Dynamic Model Learning Tzu-Kuo Huang, 2013

Mathematical Theories of Interaction with Oracles Liu Yang, 2013

Short-Sighted Probabilistic Planning Felipe W. Trevizan, 2013

Statistical Models and Algorithms for Studying Hand and Finger Kinematics and their Neural Mechanisms Lucia Castellanos, 2013

Approximation Algorithms and New Models for Clustering and Learning Pranjal Awasthi, 2013

Uncovering Structure in High-Dimensions: Networks and Multi-task Learning Problems Mladen Kolar, 2013

Learning with Sparsity: Structures, Optimization and Applications Xi Chen, 2013

GraphLab: A Distributed Abstraction for Large Scale Machine Learning Yucheng Low, 2013

Graph Structured Normal Means Inference James Sharpnack, 2013 (Joint Statistics & ML PhD)

Probabilistic Models for Collecting, Analyzing, and Modeling Expression Data Hai-Son Phuoc Le, 2013

Learning Large-Scale Conditional Random Fields Joseph K. Bradley, 2013

New Statistical Applications for Differential Privacy Rob Hall, 2013 (Joint Statistics & ML PhD)

Parallel and Distributed Systems for Probabilistic Reasoning Joseph Gonzalez, 2012

Spectral Approaches to Learning Predictive Representations Byron Boots, 2012

Attribute Learning using Joint Human and Machine Computation Edith L. M. Law, 2012

Statistical Methods for Studying Genetic Variation in Populations Suyash Shringarpure, 2012

Data Mining Meets HCI: Making Sense of Large Graphs Duen Horng (Polo) Chau, 2012

Learning with Limited Supervision by Input and Output Coding Yi Zhang, 2012

Target Sequence Clustering Benjamin Shih, 2011

Nonparametric Learning in High Dimensions Han Liu, 2010 (Joint Statistics & ML PhD)

Structural Analysis of Large Networks: Observations and Applications Mary McGlohon, 2010

Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy Brian D. Ziebart, 2010

Tractable Algorithms for Proximity Search on Large Graphs Purnamrita Sarkar, 2010

Rare Category Analysis Jingrui He, 2010

Coupled Semi-Supervised Learning Andrew Carlson, 2010

Fast Algorithms for Querying and Mining Large Graphs Hanghang Tong, 2009

Efficient Matrix Models for Relational Learning Ajit Paul Singh, 2009

Exploiting Domain and Task Regularities for Robust Named Entity Recognition Andrew O. Arnold, 2009

Theoretical Foundations of Active Learning Steve Hanneke, 2009

Generalized Learning Factors Analysis: Improving Cognitive Models with Machine Learning Hao Cen, 2009

Detecting Patterns of Anomalies Kaustav Das, 2009

Dynamics of Large Networks Jurij Leskovec, 2008

Computational Methods for Analyzing and Modeling Gene Regulation Dynamics Jason Ernst, 2008

Stacked Graphical Learning Zhenzhen Kou, 2007

Actively Learning Specific Function Properties with Applications to Statistical Inference Brent Bryan, 2007

Approximate Inference, Structure Learning and Feature Estimation in Markov Random Fields Pradeep Ravikumar, 2007

Scalable Graphical Models for Social Networks Anna Goldenberg, 2007

Measure Concentration of Strongly Mixing Processes with Applications Leonid Kontorovich, 2007

Tools for Graph Mining Deepayan Chakrabarti, 2005

Automatic Discovery of Latent Variable Models Ricardo Silva, 2005

dissertation on data science

  • ODSC EUROPE
  • AI+ Training
  • Speak at ODSC

dissertation on data science

  • Data Analytics
  • Data Engineering
  • Data Visualization
  • Deep Learning
  • Generative AI
  • Machine Learning
  • NLP and LLMs
  • Business & Use Cases
  • Career Advice
  • Write for us
  • ODSC Community Slack Channel
  • Upcoming Webinars

10 Compelling Machine Learning Ph.D. Dissertations for 2020

10 Compelling Machine Learning Ph.D. Dissertations for 2020

Machine Learning Modeling Research posted by Daniel Gutierrez, ODSC August 19, 2020 Daniel Gutierrez, ODSC

As a data scientist, an integral part of my work in the field revolves around keeping current with research coming out of academia. I frequently scour arXiv.org for late-breaking papers that show trends and reveal fertile areas of research. Other sources of valuable research developments are in the form of Ph.D. dissertations, the culmination of a doctoral candidate’s work to confer his/her degree. Ph.D. candidates are highly motivated to choose research topics that establish new and creative paths toward discovery in their field of study. Their dissertations are highly focused on a specific problem. If you can find a dissertation that aligns with your areas of interest, consuming the research is an excellent way to do a deep dive into the technology. After reviewing hundreds of recent theses from universities all over the country, I present 10 machine learning dissertations that I found compelling in terms of my own areas of interest.

[Related article: Introduction to Bayesian Deep Learning ]

I hope you’ll find several that match your own fields of inquiry. Each thesis may take a while to consume but will result in hours of satisfying summer reading. Enjoy!

1. Bayesian Modeling and Variable Selection for Complex Data

As we routinely encounter high-throughput data sets in complex biological and environmental research, developing novel models and methods for variable selection has received widespread attention. This dissertation addresses a few key challenges in Bayesian modeling and variable selection for high-dimensional data with complex spatial structures. 

2. Topics in Statistical Learning with a Focus on Large Scale Data

Big data vary in shape and call for different approaches. One type of big data is the tall data, i.e., a very large number of samples but not too many features. This dissertation describes a general communication-efficient algorithm for distributed statistical learning on this type of big data. The algorithm distributes the samples uniformly to multiple machines, and uses a common reference data to improve the performance of local estimates. The algorithm enables potentially much faster analysis, at a small cost to statistical performance.

Another type of big data is the wide data, i.e., too many features but a limited number of samples. It is also called high-dimensional data, to which many classical statistical methods are not applicable. 

This dissertation discusses a method of dimensionality reduction for high-dimensional classification. The method partitions features into independent communities and splits the original classification problem into separate smaller ones. It enables parallel computing and produces more interpretable results.

3. Sets as Measures: Optimization and Machine Learning

The purpose of this machine learning dissertation is to address the following simple question:

How do we design efficient algorithms to solve optimization or machine learning problems where the decision variable (or target label) is a set of unknown cardinality?

Optimization and machine learning have proved remarkably successful in applications requiring the choice of single vectors. Some tasks, in particular many inverse problems, call for the design, or estimation, of sets of objects. When the size of these sets is a priori unknown, directly applying optimization or machine learning techniques designed for single vectors appears difficult. The work in this dissertation shows that a very old idea for transforming sets into elements of a vector space (namely, a space of measures), a common trick in theoretical analysis, generates effective practical algorithms.

4. A Geometric Perspective on Some Topics in Statistical Learning

Modern science and engineering often generate data sets with a large sample size and a comparably large dimension which puts classic asymptotic theory into question in many ways. Therefore, the main focus of this dissertation is to develop a fundamental understanding of statistical procedures for estimation and hypothesis testing from a non-asymptotic point of view, where both the sample size and problem dimension grow hand in hand. A range of different problems are explored in this thesis, including work on the geometry of hypothesis testing, adaptivity to local structure in estimation, effective methods for shape-constrained problems, and early stopping with boosting algorithms. The treatment of these different problems shares the common theme of emphasizing the underlying geometric structure.

5. Essays on Random Forest Ensembles

A random forest is a popular machine learning ensemble method that has proven successful in solving a wide range of classification problems. While other successful classifiers, such as boosting algorithms or neural networks, admit natural interpretations as maximum likelihood, a suitable statistical interpretation is much more elusive for a random forest. The first part of this dissertation demonstrates that a random forest is a fruitful framework in which to study AdaBoost and deep neural networks. The work explores the concept and utility of interpolation, the ability of a classifier to perfectly fit its training data. The second part of this dissertation places a random forest on more sound statistical footing by framing it as kernel regression with the proximity kernel. The work then analyzes the parameters that control the bandwidth of this kernel and discuss useful generalizations.

6. Marginally Interpretable Generalized Linear Mixed Models

A popular approach for relating correlated measurements of a non-Gaussian response variable to a set of predictors is to introduce latent random variables and fit a generalized linear mixed model. The conventional strategy for specifying such a model leads to parameter estimates that must be interpreted conditional on the latent variables. In many cases, interest lies not in these conditional parameters, but rather in marginal parameters that summarize the average effect of the predictors across the entire population. Due to the structure of the generalized linear mixed model, the average effect across all individuals in a population is generally not the same as the effect for an average individual. Further complicating matters, obtaining marginal summaries from a generalized linear mixed model often requires evaluation of an analytically intractable integral or use of an approximation. Another popular approach in this setting is to fit a marginal model using generalized estimating equations. This strategy is effective for estimating marginal parameters, but leaves one without a formal model for the data with which to assess quality of fit or make predictions for future observations. Thus, there exists a need for a better approach.

This dissertation defines a class of marginally interpretable generalized linear mixed models that leads to parameter estimates with a marginal interpretation while maintaining the desirable statistical properties of a conditionally specified model. The distinguishing feature of these models is an additive adjustment that accounts for the curvature of the link function and thereby preserves a specific form for the marginal mean after integrating out the latent random variables. 

7. On the Detection of Hate Speech, Hate Speakers and Polarized Groups in Online Social Media

The objective of this dissertation is to explore the use of machine learning algorithms in understanding and detecting hate speech, hate speakers and polarized groups in online social media. Beginning with a unique typology for detecting abusive language, the work outlines the distinctions and similarities of different abusive language subtasks (offensive language, hate speech, cyberbullying and trolling) and how we might benefit from the progress made in each area. Specifically, the work suggests that each subtask can be categorized based on whether or not the abusive language being studied 1) is directed at a specific individual, or targets a generalized “Other” and 2) the extent to which the language is explicit versus implicit. The work then uses knowledge gained from this typology to tackle the “problem of offensive language” in hate speech detection. 

8. Lasso Guarantees for Dependent Data

Serially correlated high dimensional data are prevalent in the big data era. In order to predict and learn the complex relationship among the multiple time series, high dimensional modeling has gained importance in various fields such as control theory, statistics, economics, finance, genetics and neuroscience. This dissertation studies a number of high dimensional statistical problems involving different classes of mixing processes. 

9. Random forest robustness, variable importance, and tree aggregation

Random forest methodology is a nonparametric, machine learning approach capable of strong performance in regression and classification problems involving complex data sets. In addition to making predictions, random forests can be used to assess the relative importance of feature variables. This dissertation explores three topics related to random forests: tree aggregation, variable importance, and robustness. 

10. Climate Data Computing: Optimal Interpolation, Averaging, Visualization and Delivery

This dissertation solves two important problems in the modern analysis of big climate data. The first is the efficient visualization and fast delivery of big climate data, and the second is a computationally extensive principal component analysis (PCA) using spherical harmonics on the Earth’s surface. The second problem creates a way to supply the data for the technology developed in the first. These two problems are computationally difficult, such as the representation of higher order spherical harmonics Y400, which is critical for upscaling weather data to almost infinitely fine spatial resolution.

I hope you enjoyed learning about these compelling machine learning dissertations.

Editor’s note: Interested in more data science research? Check out the Research Frontiers track at ODSC Europe this September 17-19 or the ODSC West Research Frontiers track this October 27-30.

dissertation on data science

Daniel Gutierrez, ODSC

Daniel D. Gutierrez is a practicing data scientist who’s been working with data long before the field came in vogue. As a technology journalist, he enjoys keeping a pulse on this fast-paced industry. Daniel is also an educator having taught data science, machine learning and R classes at the university level. He has authored four computer industry books on database and data science technology, including his most recent title, “Machine Learning and Data Science: An Introduction to Statistical Learning Methods with R.” Daniel holds a BS in Mathematics and Computer Science from UCLA.

west square

BlackRock, Microsoft, and MGX Launch $100 Billion AI Infrastructure Partnership

AI and Data Science News posted by ODSC Team Sep 18, 2024 BlackRock, Global Infrastructure Partners, Microsoft, and MGX have joined forces to establish the Global AI Infrastructure...

YouTube Unveils New AI Features

YouTube Unveils New AI Features

AI and Data Science News posted by ODSC Team Sep 18, 2024 YouTube has announced a major upgrade to its platform with the introduction of new generative AI...

California Cracks Down on Election Deepfakes in 2024 with New AI Laws

California Cracks Down on Election Deepfakes in 2024 with New AI Laws

AI and Data Science News posted by ODSC Team Sep 18, 2024 California Governor Gavin Newsom has signed a series of laws aimed at curbing the misuse of...

genaix square

DiscoverDataScience.org

PhD in Data Science – Your Guide to Choosing a Doctorate Degree Program

dissertation on data science

Created by aasif.faizal

Professional opportunities in data science are growing incredibly fast. That’s great news for students looking to pursue a career as a data scientist. But it also means that there are a lot more options out there to investigate and understand before developing the best educational path for you.

A PhD is the most advanced data science degree you can get, reflecting a depth of knowledge and technical expertise that will put you at the top of your field.

phd data science

This means that PhD programs are the most time-intensive degree option out there, typically requiring that students complete dissertations involving rigorous research. This means that PhDs are not for everyone. Indeed, many who work in the world of big data hold master’s degrees rather than PhDs, which tend to involve the same coursework as PhD programs without a dissertation component. However, for the right candidate, a PhD program is the perfect choice to become a true expert on your area of focus.

If you’ve concluded that a data science PhD is the right path for you, this guide is intended to help you choose the best program to suit your needs. It will walk through some of the key considerations while picking graduate data science programs and some of the nuts and bolts (like course load and tuition costs) that are part of the data science PhD decision-making process.

Data Science PhD vs. Masters: Choosing the right option for you

If you’re considering pursuing a data science PhD, it’s worth knowing that such an advanced degree isn’t strictly necessary in order to get good work opportunities. Many who work in the field of big data only hold master’s degrees, which is the level of education expected to be a competitive candidate for data science positions.

So why pursue a data science PhD?

Simply put, a PhD in data science will leave you qualified to enter the big data industry at a high level from the outset.

You’ll be eligible for advanced positions within companies, holding greater responsibilities, keeping more direct communication with leadership, and having more influence on important data-driven decisions. You’re also likely to receive greater compensation to match your rank.

However, PhDs are not for everyone. Dissertations require a great deal of time and an interest in intensive research. If you are eager to jumpstart a career quickly, a master’s program will give you the preparation you need to hit the ground running. PhDs are appropriate for those who want to commit their time and effort to schooling as a long-term investment in their professional trajectory.

For more information on the difference between data science PhD’s and master’s programs, take a look at our guide here.

Topics include:

  • Can I get an Online Ph.D in Data Science?
  • Overview of Ph.d Coursework

Preparing for a Doctorate Program

Building a solid track record of professional experience, things to consider when choosing a school.

  • What Does it Cost to Get a Ph.D in Data Science?
  • School Listings

data analysis graph

Data Science PhD Programs, Historically

Historically, data science PhD programs were one of the main avenues to get a good data-related position in academia or industry. But, PhD programs are heavily research oriented and require a somewhat long term investment of time, money, and energy to obtain. The issue that some data science PhD holders are reporting, especially in industry settings, is that that the state of the art is moving so quickly, and that the data science industry is evolving so rapidly, that an abundance of research oriented expertise is not always what’s heavily sought after.

Instead, many companies are looking for candidates who are up to date with the latest data science techniques and technologies, and are willing to pivot to match emerging trends and practices.

One recent development that is making the data science graduate school decisions more complex is the introduction of specialty master’s degrees, that focus on rigorous but compact, professional training. Both students and companies are realizing the value of an intensive, more industry-focused degree that can provide sufficient enough training to manage complex projects and that are more client oriented, opposed to research oriented.

However, not all prospective data science PhD students are looking for jobs in industry. There are some pretty amazing research opportunities opening up across a variety of academic fields that are making use of new data collection and analysis tools. Experts that understand how to leverage data systems including statistics and computer science to analyze trends and build models will be in high demand.

Can You Get a PhD in Data Science Online?

While it is not common to get a data science Ph.D. online, there are currently two options for those looking to take advantage of the flexibility of an online program.

Indiana University Bloomington and Northcentral University both offer online Ph.D. programs with either a minor or specialization in data science.

Given the trend for schools to continue increasing online offerings, expect to see additional schools adding this option in the near future.

woman data analysis on computer screens

Overview of PhD Coursework

A PhD requires a lot of academic work, which generally requires between four and five years (sometimes longer) to complete.

Here are some of the high level factors to consider and evaluate when comparing data science graduate programs.

How many credits are required for a PhD in data science?

On average, it takes 71 credits to graduate with a PhD in data science — far longer (almost double) than traditional master’s degree programs. In addition to coursework, most PhD students also have research and teaching responsibilities that can be simultaneously demanding and really great career preparation.

What’s the core curriculum like?

In a data science doctoral program, you’ll be expected to learn many skills and also how to apply them across domains and disciplines. Core curriculums will vary from program to program, but almost all will have a core foundation of statistics.

All PhD candidates will have to take a qualifying exam. This can vary from university to university, but to give you some insight, it is broken up into three phases at Yale. They have a practical exam, a theory exam and an oral exam. The goal is to make sure doctoral students are developing the appropriate level of expertise.

Dissertation

One of the final steps of a PhD program involves presenting original research findings in a formal document called a dissertation. These will provide background and context, as well as findings and analysis, and can contribute to the understanding and evolution of data science. A dissertation idea most often provides the framework for how a PhD candidate’s graduate school experience will unfold, so it’s important to be thoughtful and deliberate while considering research opportunities.

Since data science is such a rapidly evolving field and because choosing the right PhD program is such an important factor in developing a successful career path, there are some steps that prospective doctoral students can take in advance to find the best-fitting opportunity.

Join professional associations

Even before being fully credentials, joining professional associations and organizations such as the Data Science Association and the American Association of Big Data Professionals is a good way to get exposure to the field. Many professional societies are welcoming to new members and even encourage student participation with things like discounted membership fees and awards and contest categories for student researchers. One of the biggest advantages to joining is that these professional associations bring together other data scientists for conference events, research-sharing opportunities, networking and continuing education opportunities.

Leverage your social network

Be on the lookout to make professional connections with professors, peers, and members of industry. There are a number of LinkedIn groups dedicated to data science. A well-maintained professional network is always useful to have when looking for advice or letters of recommendation while applying to graduate school and then later while applying for jobs and other career-related opportunities.

Kaggle competitions

Kaggle competitions provide the opportunity to solve real-world data science problems and win prizes. A list of data science problems can be found at Kaggle.com . Winning one of these competitions is a good way to demonstrate professional interest and experience.

Internships

Internships are a great way to get real-world experience in data science while also getting to work for top names in the world of business. For example, IBM offers a data science internship which would also help to stand out when applying for PhD programs, as well as in seeking employment in the future.

Demonstrating professional experience is not only important when looking for jobs, but it can also help while applying for graduate school. There are a number of ways for prospective students to gain exposure to the field and explore different facets of data science careers.

Get certified

There are a number of data-related certificate programs that are open to people with a variety of academic and professional experience. DeZyre has an excellent guide to different certifications, some of which might help provide good background for graduate school applications.

Conferences

Conferences are a great place to meet people presenting new and exciting research in the data science field and bounce ideas off of newfound connections. Like professional societies and organizations, discounted student rates are available to encourage student participation. In addition, some conferences will waive fees if you are presenting a poster or research at the conference, which is an extra incentive to present.

teacher in full classroom of students

It can be hard to quantify what makes a good-fit when it comes to data science graduate school programs. There are easy to evaluate factors, such as cost and location, and then there are harder to evaluate criteria such as networking opportunities, accessibility to professors, and the up-to-dateness of the program’s curriculum.

Nevertheless, there are some key relevant considerations when applying to almost any data science graduate program.

What most schools will require when applying:

  • All undergraduate and graduate transcripts
  • A statement of intent for the program (reason for applying and future plans)
  • Letters of reference
  • Application fee
  • Online application
  • A curriculum vitae (outlining all of your academic and professional accomplishments)

What Does it Cost to Get a PhD in Data Science?

The great news is that many PhD data science programs are supported by fellowships and stipends. Some are completely funded, meaning the school will pay tuition and basic living expenses. Here are several examples of fully funded programs:

  • University of Southern California
  • University of Nevada, Reno
  • Kennesaw State University
  • Worcester Polytechnic Institute
  • University of Maryland

For all other programs, the average range of tuition, depending on the school can range anywhere from $1,300 per credit hour to $2,000 amount per credit hour. Remember, typical PhD programs in data science are between 60 and 75 credit hours, meaning you could spend up to $150,000 over several years.

That’s why the financial aspects are so important to evaluate when assessing PhD programs, because some schools offer full stipends so that you are able to attend without having to find supplemental scholarships or tuition assistance.

Can I become a professor of data science with a PhD.? Yes! If you are interested in teaching at the college or graduate level, a PhD is the degree needed to establish the full expertise expected to be a professor. Some data scientists who hold PhDs start by entering the field of big data and pivot over to teaching after gaining a significant amount of work experience. If you’re driven to teach others or to pursue advanced research in data science, a PhD is the right degree for you.

Do I need a master’s in order to pursue a PhD.? No. Many who pursue PhDs in Data Science do not already hold advanced degrees, and many PhD programs include all the coursework of a master’s program in the first two years of school. For many students, this is the most time-effective option, allowing you to complete your education in a single pass rather than interrupting your studies after your master’s program.

Can I choose to pursue a PhD after already receiving my master’s? Yes. A master’s program can be an opportunity to get the lay of the land and determine the specific career path you’d like to forge in the world of big data. Some schools may allow you to simply extend your academic timeline after receiving your master’s degree, and it is also possible to return to school to receive a PhD if you have been working in the field for some time.

If a PhD. isn’t necessary, is it a waste of time? While not all students are candidates for PhDs, for the right students – who are keen on doing in-depth research, have the time to devote to many years of school, and potentially have an interest in continuing to work in academia – a PhD is a great choice. For more information on this question, take a look at our article Is a Data Science PhD. Worth It?

Complete List of Data Science PhD Programs

Below you will find the most comprehensive list of schools offering a doctorate in data science. Each school listing contains a link to the program specific page, GRE or a master’s degree requirements, and a link to a page with detailed course information.

Note that the listing only contains true data science programs. Other similar programs are often lumped together on other sites, but we have chosen to list programs such as data analytics and business intelligence on a separate section of the website.

Boise State University  – Boise, Idaho PhD in Computing – Data Science Concentration

The Data Science emphasis focuses on the development of mathematical and statistical algorithms, software, and computing systems to extract knowledge or insights from data.  

In 60 credits, students complete an Introduction to Graduate Studies, 12 credits of core courses, 6 credits of data science elective courses, 10 credits of other elective courses, a Doctoral Comprehensive Examination worth 1 credit, and a 30-credit dissertation.

Electives can be taken in focus areas such as Anthropology, Biometry, Ecology/Evolution and Behavior, Econometrics, Electrical Engineering, Earth Dynamics and Informatics, Geoscience, Geostatistics, Hydrology and Hydrogeology, Materials Science, and Transportation Science.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $7,236 total (Resident), $24,573 total (Non-resident)

View Course Offerings

Bowling Green State University  – Bowling Green, Ohio Ph.D. in Data Science

Data Science students at Bowling Green intertwine knowledge of computer science with statistics.

Students learn techniques in analyzing structured, unstructured, and dynamic datasets.

Courses train students to understand the principles of analytic methods and articulating the strengths and limitations of analytical methods.

The program requires 60 credit hours in the studies of Computer Science (6 credit hours), Statistics (6 credit hours), Data Science Exploration and Communication, Ethical Issues, Advanced Data Mining, and Applied Data Science Experience.

Students must also complete 21 credit hours of elective courses, a qualifying exam, a preliminary exam, and a dissertation.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $8,418 (Resident), $14,410 (Non-resident)

Brown University  – Providence, Rhode Island PhD in Computer Science – Concentration in Data Science

Brown University’s database group is a world leader in systems-oriented database research; they seek PhD candidates with strong system-building skills who are interested in researching TupleWare, MLbase, MDCC, Crowd DB, or PIQL.

In order to gain entrance, applicants should consider first doing a research internship at Brown with this group. Other ways to boost an application are to take and do well at massive open online courses, do an internship at a large company, and get involved in a large open-source software project.

Coding well in C++ is preferred.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $62,680 total

Chapman University  – Irvine, California Doctorate in Computational and Data Sciences

Candidates for the doctorate in computational and data science at Chapman University begin by completing 13 core credits in basic methodologies and techniques of computational science.

Students complete 45 credits of electives, which are personalized to match the specific interests and research topics of the student.

Finally, students complete up to 12 credits in dissertation research.

Applicants must have completed courses in differential equations, data structures, and probability and statistics, or take specific foundation courses, before beginning coursework toward the PhD.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $37,538 per year

Clemson University / Medical University of South Carolina (MUSC) – Joint Program – Clemson, South Carolina & Charleston, South Carolina Doctor of Philosophy in Biomedical Data Science and Informatics – Clemson

The PhD in biomedical data science and informatics is a joint program co-authored by Clemson University and the Medical University of South Carolina (MUSC).

Students choose one of three tracks to pursue: precision medicine, population health, and clinical and translational informatics. Students complete 65-68 credit hours, and take courses in each of 5 areas: biomedical informatics foundations and applications; computing/math/statistics/engineering; population health, health systems, and policy; biomedical/medical domain; and lab rotations, seminars, and doctoral research.

Applicants must have a bachelor’s in health science, computing, mathematics, statistics, engineering, or a related field, and it is recommended to also have competency in a second of these areas.

Program requirements include a year of calculus and college biology, as well as experience in computer programming.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $10,858 total (South Carolina Resident), $22,566 total (Non-resident)

View Course Offerings – Clemson

George Mason University  – Fairfax, Virginia Doctor of Philosophy in Computational Sciences and Informatics – Emphasis in Data Science

George Mason’s PhD in computational sciences and informatics requires a minimum of 72 credit hours, though this can be reduced if a student has already completed a master’s. 48 credits are toward graduate coursework, and an additional 24 are for dissertation research.

Students choose an area of emphasis—either computer modeling and simulation or data science—and completed 18 credits of the coursework in this area. Students are expected to completed the coursework in 4-5 years.

Applicants to this program must have a bachelor’s degree in a natural science, mathematics, engineering, or computer science, and must have knowledge and experience with differential equations and computer programming.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $13,426 total (Virginia Resident), $35,377 total (Non-resident)

Harrisburg University of Science and Technology  – Harrisburg, Pennsylvania Doctor of Philosophy in Data Sciences

Harrisburg University’s PhD in data science is a 4-5 year program, the first 2 of which make up the Harrisburg master’s in analytics.

Beyond this, PhD candidates complete six milestones to obtain the degree, including 18 semester hours in doctoral-level courses, such as multivariate data analysis, graph theory, machine learning.

Following the completion of ANLY 760 Doctoral Research Seminar, students in the program complete their 12 hours of dissertation research bringing the total program hours to 36.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $14,940 total

Icahn School of Medicine at Mount Sinai  – New York, New York Genetics and Data Science, PhD

As part of the Biomedical Science PhD program, the Genetics and Data Science multidisciplinary training offers research opportunities that expand on genetic research and modern genomics. The training also integrates several disciplines of biomedical sciences with machine learning, network modeling, and big data analysis.

Students in the Genetics and Data Science program complete a predetermined course schedule with a total of 64 credits and 3 years of study.

Additional course requirements and electives include laboratory rotations, a thesis proposal exam and thesis defense, Computer Systems, Intro to Algorithms, Machine Learning for Biomedical Data Science, Translational Genomics, and Practical Analysis of a Personal Genome.

Delivery Method: Campus GRE: Not Required 2022-2023 Tuition: $31,303 total

Indiana University-Purdue University Indianapolis  – Indianapolis, Indiana PhD in Data Science PhD Minor in Applied Data Science

Doctoral candidates pursuing the PhD in data science at Indiana University-Purdue must display competency in research, data analytics, and at management and infrastructure to earn the degree.

The PhD is comprised of 24 credits of a data science core, 18 credits of methods courses, 18 credits of a specialization, written and oral qualifying exams, and 30 credits of dissertation research. All requirements must be completed within 7 years.

Applicants are generally expected to have a master’s in social science, health, data science, or computer science. 

Currently a majority of the PhD students at IUPUI are funded by faculty grants and two are funded by the federal government. None of the students are self funded.

IUPUI also offers a PhD Minor in Applied Data Science that is 12-18 credits. The minor is open to students enrolled at IUPUI or IU Bloomington in a doctoral program other than Data Science.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $9,228 per year (Indiana Resident), $25,368 per year (Non-resident)

Jackson State University – Jackson, Mississippi PhD Computational and Data-Enabled Science and Engineering

Jackson State University offers a PhD in computational and data-enabled science and engineering with 5 concentration areas: computational biology and bioinformatics, computational science and engineering, computational physical science, computation public health, and computational mathematics and social science.

Students complete 12 credits of common core courses, 12 credits in the specialization, 24 credits of electives, and 24 credits in dissertation research.

Students may complete the doctoral program in as little as 5 years and no more than 8 years.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $8,270 total

Kennesaw State University  – Kennesaw, Georgia PhD in Analytics and Data Science

Students pursuing a PhD in analytics and data science at Kennesaw State University must complete 78 credit hours: 48 course hours and 6 electives (spread over 4 years of study), a minimum 12 credit hours for dissertation research, and a minimum 12 credit-hour internship.

Prior to dissertation research, the comprehensive examination will cover material from the three areas of study: computer science, mathematics, and statistics.

Successful applicants will have a master’s degree in a computational field, calculus I and II, programming experience, modeling experience, and are encouraged to have a base SAS certification.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $5,328 total (Georgia Resident), $19,188 total (Non-resident)

New Jersey Institute of Technology  – Newark, New Jersey PhD in Business Data Science

Students may enter the PhD program in business data science at the New Jersey Institute of Technology with either a relevant bachelor’s or master’s degree. Students with bachelor’s degrees begin with 36 credits of advanced courses, and those with master’s take 18 credits before moving on to credits in dissertation research.

Core courses include business research methods, data mining and analysis, data management system design, statistical computing with SAS and R, and regression analysis.

Students take qualifying examinations at the end of years 1 and 2, and must defend their dissertations successfully by the end of year 6.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $21,932 total (New Jersey Resident), $32,426 total (Non-resident)

New York University  – New York, New York PhD in Data Science

Doctoral candidates in data science at New York University must complete 72 credit hours, pass a comprehensive and qualifying exam, and defend a dissertation with 10 years of entering the program.

Required courses include an introduction to data science, probability and statistics for data science, machine learning and computational statistics, big data, and inference and representation.

Applicants must have an undergraduate or master’s degree in fields such as mathematics, statistics, computer science, engineering, or other scientific disciplines. Experience with calculus, probability, statistics, and computer programming is also required.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $37,332 per year

View Course Offering

Northcentral University  – San Diego, California PhD in Data Science-TIM

Northcentral University offers a PhD in technology and innovation management with a specialization in data science.

The program requires 60 credit hours, including 6-7 core courses, 3 in research, a PhD portfolio, and 4 dissertation courses.

The data science specialization requires 6 courses: data mining, knowledge management, quantitative methods for data analytics and business intelligence, data visualization, predicting the future, and big data integration.

Applicants must have a master’s already.

Delivery Method: Online GRE: Required 2022-2023 Tuition: $16,794 total

Stevens Institute of Technology – Hoboken, New Jersey Ph.D. in Data Science

Stevens Institute of Technology has developed a data science Ph.D. program geared to help graduates become innovators in the space.

The rigorous curriculum emphasizes mathematical and statistical modeling, machine learning, computational systems and data management.

The program is directed by Dr. Ted Stohr, a recognized thought leader in the information systems, operations and business process management arenas.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $39,408 per year

University at Buffalo – Buffalo, New York PhD Computational and Data-Enabled Science and Engineering

The curriculum for the University of Buffalo’s PhD in computational and data-enabled science and engineering centers around three areas: data science, applied mathematics and numerical methods, and high performance and data intensive computing. 9 credit course of courses must be completed in each of these three areas. Altogether, the program consists of 72 credit hours, and should be completed in 4-5 years. A master’s degree is required for admission; courses taken during the master’s may be able to count toward some of the core coursework requirements.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $11,310 per year (New York Resident), $23,100 per year (Non-resident)

University of Colorado Denver – Denver, Colorado PhD in Big Data Science and Engineering

The University of Colorado – Denver offers a unique program for those students who have already received admission to the computer science and information systems PhD program.

The Big Data Science and Engineering (BDSE) program is a PhD fellowship program that allows selected students to pursue research in the area of big data science and engineering. This new fellowship program was created to train more computer scientists in data science application fields such as health informatics, geosciences, precision and personalized medicine, business analytics, and smart cities and cybersecurity.

Students in the doctoral program must complete 30 credit hours of computer science classes beyond a master’s level, and 30 credit hours of dissertation research.

The BDSE fellowship requires students to have an advisor both in the core disciplines (either computer science or mathematics and statistics) as well as an advisor in the application discipline (medicine and public health, business, or geosciences).

In addition, the fellowship covers full stipend, tuition, and fees up to ~50k for BDSE fellows annually. Important eligibility requirements can be found here.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $55,260 total

University of Marylan d  – College Park, Maryland PhD in Information Studies

Data science is a potential research area for doctoral candidates in information studies at the University of Maryland – College Park. This includes big data, data analytics, and data mining.

Applicants for the PhD must have taken the following courses in undergraduate studies: programming languages, data structures, design and analysis of computer algorithms, calculus I and II, and linear algebra.

Students must complete 6 qualifying courses, 2 elective graduate courses, and at least 12 credit hours of dissertation research.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $16,238 total (Maryland Resident), $35,388 total (Non-resident)

University of Massachusetts Boston  – Boston, Massachusetts PhD in Business Administration – Information Systems for Data Science Track

The University of Massachusetts – Boston offers a PhD in information systems for data science. As this is a business degree, students must complete coursework in their first two years with a focus on data for business; for example, taking courses such as business in context: markets, technologies, and societies.

Students must take and pass qualifying exams at the end of year 1, comprehensive exams at the end of year 2, and defend their theses at the end of year 4.

Those with a degree in statistics, economics, math, computer science, management sciences, information systems, and other related fields are especially encouraged, though a quantitative degree is not necessary.

Students accepted by the program are ordinarily offered full tuition credits and a stipend ($25,000 per year) to cover educational expenses and help defray living costs for up to three years of study.

During the first two years of coursework, they are assigned to a faculty member as a research assistant; for the third year students will be engaged in instructional activities. Funding for the fourth year is merit-based from a limited pool of program funds

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $18,894 total (in-state), $36,879 (out-of-state)

University of Nevada Reno – Reno, Nevada PhD in Statistics and Data Science

The University of Nevada – Reno’s doctoral program in statistics and data science is comprised of 72 credit hours to be completed over the course of 4-5 years. Coursework is all within the scope of statistics, with titles such as statistical theory, probability theory, linear models, multivariate analysis, statistical learning, statistical computing, time series analysis.

The completion of a Master’s degree in mathematics or statistics prior to enrollment in the doctoral program is strongly recommended, but not required.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $5,814 total (in-state), $22,356 (out-of-state)

University of Southern California – Los Angles, California PhD in Data Sciences & Operations

USC Marshall School of Business offers a PhD in data sciences and operations to be completed in 5 years.

Students can choose either a track in operations management or in statistics. Both tracks require 4 courses in fall and spring of the first 2 years, as well as a research paper and courses during the summers. Year 3 is devoted to dissertation preparation and year 4 and/or 5 to dissertation defense.

A bachelor’s degree is necessary for application, but no field or further experience is required.

Students should complete 60 units of coursework. If the students are admitted with Advanced Standing (e.g., Master’s Degree in appropriate field), this requirement may be reduced to 40 credits.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $63,468 total

University of Tennessee-Knoxville  – Knoxville, Tennessee The Data Science and Engineering PhD

The data science and engineering PhD at the University of Tennessee – Knoxville requires 36 hours of coursework and 36 hours of dissertation research. For those entering with an MS degree, only 24 hours of course work is required.

The core curriculum includes work in statistics, machine learning, and scripting languages and is enhanced by 6 hours in courses that focus either on policy issues related to data, or technology entrepreneurship.

Students must also choose a knowledge specialization in one of these fields: health and biological sciences, advanced manufacturing, materials science, environmental and climate science, transportation science, national security, urban systems science, and advanced data science.

Applicants must have a bachelor’s or master’s degree in engineering or a scientific field. 

All students that are admitted will be supported by a research fellowship and tuition will be included.

Many students will perform research with scientists from Oak Ridge national lab, which is located about 30 minutes drive from campus.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $11,468 total (Tennessee Resident), $29,656 total (Non-resident)

University of Vermont – Burlington, Vermont Complex Systems and Data Science (CSDS), PhD

Through the College of Engineering and Mathematical Sciences, the Complex Systems and Data Science (CSDS) PhD program is pan-disciplinary and provides computational and theoretical training. Students may customize the program depending on their chosen area of focus.

Students in this program work in research groups across campus.

Core courses include Data Science, Principles of Complex Systems and Modeling Complex Systems. Elective courses include Machine Learning, Complex Networks, Evolutionary Computation, Human/Computer Interaction, and Data Mining.

The program requires at least 75 credits to graduate with approval by the student graduate studies committee.

Delivery Method: Campus GRE: Not Required 2022-2023 Tuition: $12,204 total (Vermont Resident), $30,960 total (Non-resident)

University of Washington Seattle Campus – Seattle, Washington PhD in Big Data and Data Science

The University of Washington’s PhD program in data science has 2 key goals: training of new data scientists and cyberinfrastructure development, i.e., development of open-source tools and services that scientists around the world can use for big data analysis.

Students must take core courses in data management, machine learning, data visualization, and statistics.

Students are also required to complete at least one internship that covers practical work in big data.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $17,004 per year (Washington resident), $30,477 (non-resident)

University of Wisconsin-Madison – Madison, Wisconsin PhD in Biomedical Data Science

The PhD program in Biomedical Data Science offered by the Department of Biostatistics and Medical Informatics at UW-Madison is unique, in blending the best of statistics and computer science, biostatistics and biomedical informatics. 

Students complete three year-long course sequences in biostatistics theory and methods, computer science/informatics, and a specialized sequence to fit their interests.

Students also complete three research rotations within their first two years in the program, to both expand their breadth of knowledge and assist in identifying a research advisor.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $10,728 total (in-state), $24,054 total (out-of-state)

Vanderbilt University – Nashville, Tennessee Data Science Track of the BMI PhD Program

The PhD in biomedical informatics at Vanderbilt has the option of a data science track.

Students complete courses in the areas of biomedical informatics (3 courses), computer science (4 courses), statistical methods (4 courses), and biomedical science (2 courses). Students are expected to complete core courses and defend their dissertations within 5 years of beginning the program.

Applicants must have a bachelor’s degree in computer science, engineering, biology, biochemistry, nursing, mathematics, statistics, physics, information management, or some other health-related field.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $53,160 per year

Washington University in St. Louis – St. Louis, Missouri Doctorate in Computational & Data Sciences

Washington University now offers an interdisciplinary Ph.D. in Computational & Data Sciences where students can choose from one of four tracks (Computational Methodologies, Political Science, Psychological & Brain Sciences, or Social Work & Public Health).

Students are fully funded and will receive a stipend for at least five years contingent on making sufficient progress in the program.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $59,420 total

Worcester Polytechnic Institute – Worcester, Massachusetts PhD in Data Science

The PhD in data science at Worcester Polytechnic Institute focuses on 5 areas: integrative data science, business intelligence and case studies, data access and management, data analytics and mining, and mathematical analysis.

Students first complete a master’s in data science, and then complete 60 credit hours beyond the master’s, including 30 credit hours of research.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $28,980 per year

Yale University – New Haven, Connecticut PhD Program – Department of Stats and Data Science

The PhD in statistics and data science at Yale University offers broad training in the areas of statistical theory, probability theory, stochastic processes, asymptotics, information theory, machine learning, data analysis, statistical computing, and graphical methods. Students complete 12 courses in the first year in these topics.

Students are required to teach one course each semester of their third and fourth years.

Most students complete and defend their dissertations in their fifth year.

Applicants should have an educational background in statistics, with an undergraduate major in statistics, mathematics, computer science, or similar field.

Delivery Method: Campus GRE: Required 2022-2023 Tuition: $46,900 total

dissertation on data science

  • Related Programs

LIBRARIES | ARCH

Data science masters theses.

The Master of Science in Data Science program requires the successful completion of 12 courses to obtain a degree. These requirements cover six core courses, a leadership or project management course, two required courses corresponding to a declared specialization, two electives, and a capstone project or thesis. This collection contains a selection of masters theses or capstone projects by MSDS graduates.

Collection Details

List of items in this collection
  Title Date Added Visibility
 

2022-06-15
 

2022-06-05
 

2020-06-16
 

2020-06-13
 

2019-11-26
 

2019-11-21
 

2019-06-23

dissertation on data science

Recent Dissertation Topics

Marty Wells and a student look over papers

Kerstin Emily Frailey - “PRACTICAL DATA QUALITY FOR MODERN DATA & MODERN USES, WITH APPLICATIONS TO AMERICA’S COVID-19 DATA"

Dissertation Advisor: Martin Wells

Initial job placement: Co-Founder & CEO

David Kent - “Smoothness-Penalized Deconvolution: Rates of Convergence, Choice of Tuning Parameter, and Inference"

Dissertation Advisor: David Ruppert

Initial job placement: VISITING ASSISTANT PROFESSOR - Cornell University

Yuchen Xu - “Dynamic Atomic Column Detection in Transmission Electron Microscopy Videos via Ridge Estimation”

Dissertation Advisor: David Matteson

Initial job placement: Postdoctoral Fellow - UCLA

Siyi Deng - “Optimal and Safe Semi-supervised Estimation and Inference for High-dimensional Linear Regression"

Dissertation Advisor: Yang Ning

Initial job placement: Data Scientist - TikTok

Peter (Haoxuan) Wu - “Advances in adaptive and deep Bayesian state-space models”

Initial job placement: Quantitative Researcher - DRW

Grace Deng - “Generative models and Bayesian spillover graphs for dynamic networks”

Initial job placement: Data Scientist - Research at Google

Samriddha Lahiry - “Some problems of asymptotic quantum statistical inference”

Dissertation Advisor: Michael Nussbaum

Initial job placement: Postdoctoral Fellow - Harvard University

Yaosheng Xu - “WWTA load-balancing for parallel-server systems with heterogeneous servers and multi-scale heavy traffic limits for generalized Jackson networks”

Dissertation Advisor: Jim Dai

Initial job placement: Applied Scientist - Amazon

Seth Strimas-Mackey - “Latent structure in linear prediction and corpora comparison”

Dissertation Advisor: Marten Wegkamp and Florentina Bunea

Initial job placement: Data Scientist at Google

Tao Zhang - “Topics in modern regression modeling”

Dissertation Advisor: David Ruppert and Kengo Kato

Initial job placement: Quantitative Researcher - Point72

Wentian Huang - “Nonparametric and semiparametric approaches to functional data modeling”

Initial job placement: Ernst & Young

Binh Tang - “Deep probabilistic models for sequential prediction”

Initial job placement: Amazon

Yi Su - “Off-policy evaluation and learning for interactive systems"

Dissertation Advisor: Thorsten Joachims

Initial job placement: Berkeley (postdoc)

Ruqi Zhang - “Scalable and reliable inference for probabilistic modeling”

Dissertation Advisor: Christopher De Sa

Jason Sun - “Recent developments on Matrix Completion"

Initial job placement: LinkedIn

Indrayudh Ghosal - “Model combinations and the Infinitesimal Jackknife : how to refine models with boosting and quantify uncertainty”

Dissertation Advisor: Giles Hooker

Benjamin Ryan Baer - “Contributions to fairness and transparency”

Initial job placement: Rochester (postdoc)

Megan Lynne Gelsinger - “Spatial and temporal approaches to analyzing big data”

Dissertation Advisor: David Matteson and Joe Guinness

Initial job placement: Institute for Defense Analysis

Zhengze Zhou - “Statistical inference for machine learning : feature importance, uncertainty quantification and interpretation stability”

Initial job placement: Facebook

Huijie Feng - “Estimation and inference of high-dimensional individualized threshold with binary responses”

Initial job placement: Microsoft

Xiaojie Mao - “Machine learning methods for data-driven decision making : contextual optimization, causal inference, and algorithmic fairness”

Dissertation Advisor: Nathan Kallus and Madeleine Udell

Initial job placement: Tsinghua University, China

Xin Bing - “Structured latent factor models : Identifiability, estimation, inference and prediction”

Initial job placement: Cambridge (postdoc), University of Toronto

Yang Liu - “Nonparametric regression and density estimation on a network"

Dissertation Advisor: David Ruppert and Peter Frazier

Initial job placement: Research Analyst - Cubist Systematic Strategies

Skyler Seto - “Learning from less : improving and understanding model selection in penalized machine learning problems”

Initial job placement: Machine Learning Researcher - Apple

Jiekun Feng - “Markov chain, Markov decision process, and deep reinforcement learning with applications to hospital management and real-time ride-hailing”

Initial job placement:

Wenyu Zhang - “Methods for change point detection in sequential data”

Initial job placement: Research Scientist - Institute for Infocomm Research

Liao Zhu - “The adaptive multi-factor model and the financial market"

Initial job placement: Quantitative Researcher - Two Sigma

Xiaoyun Quan - “Latent Gaussian copula model for high dimensional mixed data, and its applications”

Dissertation Advisor: James Booth and Martin Wells

Praphruetpong (Ben) Athiwaratkun - "Density representations for words and hierarchical data"

Dissertation Advisor: Andrew Wilson

Initial job placement: AI Scientist - AWS AI Labs

Yiming Sun - “High dimensional data analysis with dependency and under limited memory”

Dissertation Advisor: Sumanta Basu and Madeleine Udell

Zi Ye - “Functional single index model and jensen effect"

Dissertation Advisor: Giles Hooker 

Initial job placement: Data & Applied Scientist - Microsoft

Hui Fen (Sarah) Tan - “Interpretable approaches to opening up black-box models”

Dissertation Advisor: Giles Hooker and Martin Wells

Daniel E. Gilbert - “Luck, fairness and Bayesian tensor completion”

Yichen zhou - “asymptotics and interpretability of decision trees and decision tree ensemblesg”.

Initial job placement: Data Scientist - Google

Ze Jin - “Measuring statistical dependence and its applications in machine learning”  

Initial job placement: Research Scientist, Facebook Integrity Ranking & ML - Facebook

Xiaohan Yan - “Statistical learning for structural patterns with trees”

Dissertation Advisor: Jacob Bien

Initial job placement: Senior Data Scientist - Microsoft

Guo Yu - “High-dimensional structured regression using convex optimization”

Dan kowal - "bayesian methods for functional and time series data".

Dissertation Advisor: David Matteson and David Ruppert

Initial job placement: assistant professor, Department of Statistics, Rice University

Keegan Kang - "Data Dependent Random Projections"

David sinclair - "model selection results for high dimensional graphical models on binary and count data with applications to fmri and genomics", liu, yanning – "statistical issues in the design and analysis of clinical trials".

Dissertation Advisor: Bruce Turnbull

Nicholson, William Bertil – "Tools for Modeling Sparse Vector Autoregressions"

Tupper, laura lindley – "topics in classification and clustering of high-dimensional data", chetelat, didier – "high-dimensional inference by unbiased risk estimation".

Initial Job Placement: Assistant Professor Universite de Montreal, Montreal, Canada

Gaynanova, Irina – "Estimation Of Sparse Low-Dimensional Linear Projections"

Dissertation Advisor: James Booth

Initial Job Placement: Assistant Professor, Texas A&M, College Station, TX

Mentch, Lucas – "Ensemble Trees and CLTS: Statistical Inference in Machine Learning"

Initial Job Placement: Assistant Professor, University of Pittsburgh, Pittsburgh, PA

Risk, Ben – "Topics in Independent Component Analysis, Likelihood Component Analysis, and Spatiotemporal Mixed Modeling"

Dissertation Advisors: David Matteson and David Ruppert

Initial Job Placement: Postdoctoral Fellow, University of North Carolina, Chapel Hill, NC

Zhao, Yue – "Contributions to the Statistical Inference for the Semiparametric Elliptical Copula Model"

Disseration Advisor: Marten Wegkamp 

Initial Job Placement: Postoctoral Fellow, McGill University, Montreal, Canada

Chen, Maximillian Gene – "Dimension Reduction and Inferential Procedures for Images"

Dissertation Advisor: Martin Wells 

Earls, Cecelia – Bayesian hierarchical Gaussian process models for functional data analysis

Dissertation Advisor: Giles Hooker

Initial Job Placement: Lecturer, Cornell University, Ithaca, NY

Li, James Yi-Wei – "Tensor (Multidimensional Array) Decomposition, Regression, and Software for Statistics and Machine Learning"

Initial Job Placement: Research Scientist, Yahoo Labs

Schneider, Matthew John – "Three Papers on Time Series Forecasting and Data Privacy"

Dissertation Advisor: John Abowd

Initial Job Placement: Assistant Professor, Northwestern University, Evanston, IL

Thorbergsson, Leifur – "Experimental design for partially observed Markov decision processes"

Initial Job Placement: Data Scientist, Memorial Sloan Kettering Cancer Center, New York, NY

Wan, Muting – "Model-Based Classification with Applications to High-Dimensional Data in Bioinformatics"

Initial Job Placement: Senior Associate, 1010 Data, New York, NY

Johnson, Lynn Marie – "Topics in Linear Models: Methods for Clustered, Censored Data and Two-Stage Sampling Designs"

Dissertation Advisor: Robert Strawderman

Initial Job Placement: Statistical Consultant, Cornell, Statistical Consulting Unit, Ithaca, NY

Tecuapetla Gomez, Inder Rafael –  "Asymptotic Inference for Locally Stationary Processes"

Initial Job Placement: Postdoctoral Fellow, Georg-August-Universitat Gottigen, Gottigen, Germany. 

Bar, Haim – "Parallel Testing, and Variable Selection -- a Mixture-Model Approach with Applications in Biostatistics" 

Dissertation Advisor: James Booth

Initial Job Placement: Postdoc, Department of Medicine, Weill Medical Center, New York, NY

Cunningham, Caitlin –  "Markov Methods for Identifying ChIP-seq Peaks" 

Initial Job Placement: Assistant Professor, Le Moyne College, Syracuse, NY

Ji, Pengsheng – "Selected Topics in Nonparametric Testing and Variable Selection for High Dimensional Data" 

Dissertation Advisor: Michael Nussbaum 

Initial Job Placement: Assistant Professor, University of Georgia, Athens, GA

Morris, Darcy Steeg – "Methods for Multivariate Longitudinal Count and Duration Models with Applications in Economics" 

Dissertation Advisor: Francesca Molinari 

Initial Job Placement: Research Mathematical Statistician, Center for Statistical Research and Methodology, U.S. Census Bureau, Washington DC

Narayanan, Rajendran – "Shrinkage Estimation for Penalised Regression, Loss Estimation and Topics on Largest Eigenvalue Distributions" 

Initial Job Placement: Visiting Scientist, Indian Statistical Institute, Kolkata, India

Xiao, Luo – "Topics in Bivariate Spline Smoothing" 

Dissertation Advisor: David Ruppert 

Initial Job Placement: Postdoc, Johns Hopkins University, Baltimore, MD

Zeber, David – "Extremal Properties of Markov Chains and the Conditional Extreme Value Model" 

Dissertation Advisor: Sidney Resnick 

Initial Job Placement: Data Analyst, Mozilla, San Francisco, CA

Clement, David – "Estimating equation methods for longitudinal and survival data" 

Dissertation Advisor: Robert Strawderman 

Initial Job Placement: Quantitative Analyst, Smartodds, London UK

Eilertson, Kirsten – "Estimation and inference of random effect models with applications to population genetics and proteomics" 

Dissertation Advisor: Carlos Bustamante 

Initial Job Placement: Biostatistician, The J. David Gladstone Institutes, San Francisco CA

Grabchak, Michael – "Tempered stable distributions: properties and extensions" 

Dissertation Advisor: Gennady Samorodnitsky 

Initial Job Placement: Assistant Professor, UNC Charlotte, Charlotte NC

Li, Yingxing – "Aspects of penalized splines" 

Initial Job Placement: Assistant Professor, The Wang Yanan Institute for Studies in Economics, Xiamen University

Lopez Oliveros, Luis – "Modeling end-user behavior in data networks" 

Dissertation Advisor: Sidney Resnick  

Initial Job Placement: Consultant, Murex North America, New York NY

Ma, Xin – "Statistical Methods for Genome Variant Calling and Population Genetic Inference from Next-Generation Sequencing Data" 

Initial Job Placement: Postdoc, Stanford University, Stanford CA

Kormaksson, Matthias – "Dynamic path analysis and model based clustering of microarray data" 

Dissertation Advisor: James Booth 

Initial Job Placement: Postdoc, Department of Public Health, Weill Cornell Medical College, New York NY

Schifano, Elizabeth – "Topics in penalized estimation" 

Initial Job Placement: Postdoc, Department of Biostatistics, Harvard University, Boston MA

Hanlon, Bret – "High-dimensional data analysis" 

Dissertation Advisor: Anand Vidyashankar 

Shaby, Benjamin – "Tools for hard bayesian computations" 

Initial Job Placement: Postdoc, SAMSI, Durham NC

Zipunnikov, Vadim – "Topics on generalized linear mixed models" 

Initial Job Placement: Postdoc, Department of Biostatistics, Johns Hopkins University, Baltimore MD

Barger, Kathryn Jo-Anne – "Objective bayesian estimation for the number of classes in a population using Jeffreys and reference priors" 

Dissertation Advisor: John Bunge 

Initial Job Placement: Pfizer Incorporated

Chan, Serena Suewei – "Robust and efficient inference for linear mixed models using skew-normal distributions" 

Initial Job Placement: Statistician, Takeda Pharmaceuticles, Deerfield IL

Lin, Haizhi – "Distressed debt prices and recovery rate estimation" 

Dissertation Advisor: Martin Wells  

Initial Job Placement: Associate, Fixed Income Department, Credit Suisse Securities (USA), New York, NY

Advertisement

Advertisement

Data science: a game changer for science and innovation

  • Regular Paper
  • Open access
  • Published: 19 April 2021
  • Volume 11 , pages 263–278, ( 2021 )

Cite this article

You have full access to this open access article

dissertation on data science

  • Valerio Grossi 1 ,
  • Fosca Giannotti 1 ,
  • Dino Pedreschi 2 ,
  • Paolo Manghi 3 ,
  • Pasquale Pagano 3 &
  • Massimiliano Assante 3  

16k Accesses

22 Citations

57 Altmetric

Explore all metrics

This paper shows data science’s potential for disruptive innovation in science, industry, policy, and people’s lives. We present how data science impacts science and society at large in the coming years, including ethical problems in managing human behavior data and considering the quantitative expectations of data science economic impact. We introduce concepts such as open science and e-infrastructure as useful tools for supporting ethical data science and training new generations of data scientists. Finally, this work outlines SoBigData Research Infrastructure as an easy-to-access platform for executing complex data science processes. The services proposed by SoBigData are aimed at using data science to understand the complexity of our contemporary, globally interconnected society.

Similar content being viewed by others

dissertation on data science

What Is Data Science?

Introduction to applied data science, data science, explore related subjects.

  • Artificial Intelligence

Avoid common mistakes on your manuscript.

1 Introduction: from data to knowledge

Data science is an interdisciplinary and pervasive paradigm where different theories and models are combined to transform data into knowledge (and value). Experiments and analyses over massive datasets are functional not only to the validation of existing theories and models but also to the data-driven discovery of patterns emerging from data, which can help scientists in the design of better theories and models, yielding a deeper understanding of the complexity of the social, economic, biological, technological, cultural, and natural phenomenon. The products of data science are the result of re-interpreting available data for analysis goals that differ from the original reasons motivating data collection. All these aspects are producing a change in the scientific method, in research and in the way our society makes decisions [ 2 ].

Data science emerges to concurring facts: (i) the advent of big data that provides the critical mass of actual examples to learn from, (ii) the advances in data analysis and learning techniques that can produce predictive models and behavioral patterns from big data, and (iii) the advances in high-performance computing infrastructures that make it possible to ingest and manage big data and perform complex analysis [ 16 ].

Paper organization Section 2 discusses how data science impacts our science and society at large in the coming years. Section 3 outlines the main issues related to the ethical problems in studying human behaviors that data science introduces. In Sect.  4 , we show how concepts such as open science and e-infrastructure are effective tools for supporting, disseminating ethical uses of the data, and training new generations of data scientists. We will illustrate the importance of an open data science with examples provided later in the paper. Finally, we show some use cases of data science through thematic environments that bind the datasets with social mining methods.

2 Data science for society, science, industry and business

figure 1

Data science as an ecosystem: on the left, the figure shows the main components enabling data science (data, analytical methods, and infrastructures). On the right, we can find the impact of data science into society, science, and business. All the activities related to data science should be done under rigid ethical principles

The quality of business decision making, government administration, and scientific research can potentially be improved by analyzing data. Data science offers important insights into many complicated issues, in many instances, with remarkable accuracy and timeliness.

figure 2

The data science pipeline starts with raw data and transforms them into data used for analytics. The next step is to transform these data into knowledge through analytical methods and then provide results and evaluation measures

As shown in Fig.  1 , data science is an ecosystem where the following scientific, technological, and socioeconomic factors interact:

Data Availability of data and access to data sources;

Analytics & computing infrastructures Availability of high performance analytical processing and open-source analytics;

Skills Availability of highly and rightly skilled data scientists and engineers;

Ethical & legal aspects Availability of regulatory environments for data ownership and usage, data protection and privacy, security, liability, cybercrime, and intellectual property rights;

Applications Business and market ready applications;

Social aspects Focus on major societal global challenges.

Data science envisioned as the intersection between data mining, big data analytics, artificial intelligence, statistical modeling, and complex systems is capable of monitoring data quality and analytical processes results transparently. If we want data science to face the global challenges and become a determinant factor of sustainable development, it is necessary to push towards an open global ecosystem for science, industrial, and societal innovation [ 48 ]. We need to build an ecosystem of socioeconomic activities, where each new idea, product, and service create opportunities for further purposes, and products. An open data strategy, innovation, interoperability, and suitable intellectual property rights can catalyze such an ecosystem and boost economic growth and sustainable development. This strategy also requires a “networked thinking” and a participatory, inclusive approach.

Data are relevant in almost all the scientific disciplines, and a data-dominated science could lead to the solution of problems currently considered hard or impossible to tackle. It is impossible to cover all the scientific sectors where a data-driven revolution is ongoing; here, we shall only provide just a few examples.

The Sloan Digital Sky Survey Footnote 1 has become a central resource for astronomers over the world. Astronomy is being transformed from the one where taking pictures of the sky was a large part of an astronomer’s job, to the one where the images are already in a database, and the astronomer’s task is to find interesting objects and phenomenon in the database. In biological sciences, data are stored in public repositories. There is an entire discipline of bioinformatics that is devoted to the analysis of such data. Footnote 2 Data-centric approaches based on personal behaviors can also support medical applications analyzing data at both human behavior levels and lower molecular ones. For example, integrating genome data of medical reactions with the habits of the users, enabling a computational drug science for high-precision personalized medicine. In humans, as in other organisms, most cellular components exert their functions through interactions with other cellular components. The totality of these interactions (representing the human “interactome”) is a network with hundreds of thousand nodes and a much larger number of links. A disease is rarely a consequence of an abnormality in a single gene. Instead, the disease phenotype is a reflection of various pathological processes that interact in a complex network. Network-based approaches can have multiple biological and clinical applications, especially in revealing the mechanisms behind complex diseases [ 6 ].

Now, we illustrate the typical data science pipeline [ 50 ]. People, machines, systems, factories, organizations, communities, and societies produce data. Data are collected in every aspect of our life, when: we submit a tax declaration; a customer orders an item online; a social media user posts a comment; a X-ray machine is used to take a picture; a traveler sends a review on a restaurant; a sensor in a supply chain sends an alert; or a scientist conducts an experiment. This huge and heterogeneous quantity of data needs to be extracted, loaded, understood, transformed, and in many cases, anonymized before they may be used for analysis. Analysis results include routines, automated decisions, predictions, and recommendations, and outcomes that need to be interpreted to produce actions and feedback. Furthermore, this scenario must also consider ethical problems in managing social data. Figure 2 depicts the data science pipeline. Footnote 3 Ethical aspects are important in the application of data science in several sectors, and they are addressed in Sect.  3 .

2.1 Impact on society

Data science is an opportunity for improving our society and boosting social progress. It can support policymaking; it offers novel ways to produce high-quality and high-precision statistical information and empower citizens with self-awareness tools. Furthermore, it can help to promote ethical uses of big data.

Modern cities are perfect environments densely traversed by large data flows. Using traffic monitoring systems, environmental sensors, GPS individual traces, and social information, we can organize cities as a collective sharing of resources that need to be optimized, continuously monitored, and promptly adjusted when needed. It is easy to understand the potentiality of data science by introducing terms such as urban planning , public transportation , reduction of energy consumption , ecological sustainability, safety , and management of mass events. These terms represent only the front line of topics that can benefit from the awareness that big data might provide to the city stakeholders [ 22 , 27 , 29 ]. Several methods allowing human mobility analysis and prediction are available in the literature: MyWay [ 47 ] exploits individual systematic behaviors to predict future human movements by combining individual and collective learned models. Carpooling [ 22 ] is based on mobility data from travelers in a given territory and constructs a network of potential carpooling users, by exploiting topological properties, highlighting sub-populations with higher chances to create a carpooling community and the propensity of users to be either drivers or passengers in a shared car. Event attendance prediction [ 13 ] analyzes users’ call habits and classifies people into behavioral categories, dividing them among residents, commuters, and visitors and allows to observe the variety of behaviors of city users and the attendance in big events in cities.

Electric mobility is expected to gain importance for the world. The impact of a complete switch to electric mobility is still under investigation, and what appears to be critical is the intensity of flows due to charge (and fast recharge) systems that may challenge the stability of the power network. To avoid instabilities regarding the charging infrastructure, an accurate prediction of power flows associated with mobility is needed. The use of personal mobility data can estimate the mobility flow and simulate the impact of different charging behavioral patterns to predict power flows and optimize the position of the charging infrastructures [ 25 , 49 ]. Lorini et al. [ 26 ] is an example of an urban flood prediction that integrates data provided by CEM system Footnote 4 and Twitter data. Twitter data are processed using massive multilingual approaches for classification. The model is a supervised model which requires a careful data collection and validation of ground truth about confirmed floods from multiple sources.

Another example of data science for society can be found in the development of applications with functions aimed directly at the individual. In this context, concepts such as personal data stores and personal data analytics are aimed at implementing a new deal on personal data, providing a user-centric view where data are collected, integrated and analyzed at the individual level, and providing the user with better awareness of own behavioral, health, and consumer profiles. Within this user-centric perspective, there is room for an even broader market of business applications, such as high-precision real-time targeted marketing, e.g., self-organizing decision making to preserve desired global properties, and sustainability of the transportation or the healthcare system. Such contexts emphasize two essential aspects of data science: the need for creativeness to exploit and combine the several data sources in novel ways and the need to give awareness and control of the personal data to the users that generate them, to sustain a transparent, trust-based, crowd-sourced data ecosystem [ 19 ].

The impact of online social networks in our society has changed the mechanisms behind information spreading and news production. The transformation of media ecosystems and news consumption are having consequences in several fields. A relevant example is the impact of misinformation on society, as for the Brexit referendum when the massive diffusion of fake news has been considered one of the most relevant factors of the outcome of this political event. Examples of achievements are provided by the results regarding the influence of external news media on polarization in online social networks. These achievements indicate that users are highly polarized towards news sources, i.e., they cite (and tend to cite) sources that they identify as ideologically similar to them. Other results regard echo chambers and the role of social media users: there is a strong correlation between the orientation of the content produced and consumed. In other words, an opinion “echoes” back to the user when others are sharing it in the “chamber” (i.e., the social network around the user) [ 36 ]. Other results worth mentioning regard efforts devoted to uncovering spam and bot activities in stock microblogs on Twitter: taking inspiration from biological DNA, the idea is to model the online users’ behavior through strings of characters representing sequences of online users’ actions. As a result of the following papers, [ 11 , 12 ] report that 71% of suspicious users were classified as bots; furthermore, 37% of them also got suspended by Twitter few months after our investigation. Several approaches can be found in the literature. However, they generally display some limitations. Some of them work only on some of the features of the diffusion of misinformation (bot detections, segregation of users due to their opinions or other social analysis), or there is a lack of comprehensive frameworks for interpreting results. While the former case is somehow due to the innovation of the research field and it is explainable, the latter showcases a more fundamental need, as, without strict statistical validation, it is hard to state which are the crucial elements that permit a well-grounded description of a system. For avoiding fake news diffusion, we can state that building a comprehensive fake news dataset providing all information about publishers, shared contents, and the engagements of users over space and time, together with their profile stories, can help the development of innovative and effective learning models. Both unsupervised and supervised methods will work together to identify misleading information. Multidisciplinary teams made up of journalists, linguists, and behavioral scientists and similar will be needed to identify what amounts to information warfare campaigns. Cyberwarfare and information warfare will be two of the biggest threats the world will face in the 21st Century.

Social sensing methods collect data produced by digital citizens, by either opportunistic or participatory crowd-sensing, depending on users’ awareness of their involvement. These approaches present a variety of technological and ethical challenges. An example is represented by Twitter Monitor [ 10 ], that is crowd-sensing tool designed to access Twitter streams through the Twitter Streaming API. It allows launching parallel listening for collecting different sets of data. Twitter Monitor represents a tool for creating services for listening campaigns regarding relevant events such as political elections, natural and human-made disasters, popular national events, etc. [ 11 ]. This campaign can be carried out, specifying keywords, accounts, and geographical areas of interest.

Nowcasting Footnote 5 financial and economic indicators focus on the potential of data science as a proxy for well-being and socioeconomic applications. The development of innovative research methods has demonstrated that poverty indicators can be approximated by social and behavioral mobility metrics extracted from mobile phone data and GPS data [ 34 ]; and the Gross Domestic Product can be accurately nowcasted by using retail supermarket market data [ 18 ]. Furthermore, nowcasting of demographic aspects of territory based on Twitter data [ 1 ] can support official statistics, through the estimation of location, occupation, and semantics. Networks are a convenient way to represent the complex interaction among the elements of a large system. In economics, networks are gaining increasing attention because the underlying topology of a networked system affects the aggregate output, the propagation of shocks, or financial distress; or the topology allows us to learn something about a node by looking at the properties of its neighbors. Among the most investigated financial and economic networks, we cite a work that analyzes the interbank systems, the payment networks between firms, the banks-firms bipartite networks, and the trading network between investors [ 37 ]. Another interesting phenomenon is the advent of blockchain technology that has led to the innovation of bitcoin crypto-currency [ 31 ].

Data science is an excellent opportunity for policy, data journalism, and marketing. The online media arena is now available as a real-time experimenting society for understanding social mechanisms, like harassment, discrimination, hate, and fake news. In our vision, the use of data science approaches is necessary for better governance. These new approaches integrate and change the Official Statistics representing a cheaper and more timely manner of computing them. The impact of data science-driven applications can be particularly significant when the applications help to build new infrastructures or new services for the population.

The availability of massive data portraying soccer performance has facilitated recent advances in soccer analytics. Rossi et al. [ 42 ] proposed an innovative machine learning approach to the forecasting of non-contact injuries for professional soccer players. In [ 3 ], we can find the definition of quantitative measures of pressing in defensive phases in soccer. Pappalardo et al. [ 33 ] outlined the automatic and data-driven evaluation of performance in soccer, a ranking system for soccer teams. Sports data science is attracting much interest and is now leading to the release of a large and public dataset of sports events.

Finally, data science has unveiled a shift from population statistics to interlinked entities statistics, connected by mutual interactions. This change of perspective reveals universal patterns underlying complex social, economic, technological, and biological systems. It is helpful to understand the dynamics of how opinions, epidemics, or innovations spread in our society, as well as the mechanisms behind complex systemic diseases, such as cancer and metabolic disorders revealing hidden relationships between them. Considering diffusive models and dynamic networks, NDlib [ 40 ] is a Python package for the description, simulation, and observation of diffusion processes in complex networks. It collects diffusive models from epidemics and opinion dynamics and allows a scientist to compare simulation over synthetic systems. For community discovery, two tools are available for studying the structure of a community and understand its habits: Demon [ 9 ] extracts ego networks (i.e., the set of nodes connected to an ego node) and identifies the real communities by adopting a democratic, bottom-up merging approach of such structures. Tiles [ 41 ] is dedicated to dynamic network data and extracts overlapping communities and tracks their evolution in time following an online iterative procedure.

2.2 Impact on industry and business

Data science can create an ecosystem of novel data-driven business opportunities. As a general trend across all sectors, massive quantities of data will be made accessible to everybody, allowing entrepreneurs to recognize and to rank shortcomings in business processes, to spot potential threads and win-win situations. Ideally, every citizen could establish from these patterns new business ideas. Co-creation enables data scientists to design innovative products and services. The value of joining different datasets is much larger than the sum of the value of the separated datasets by sharing data of various nature and provenance.

The gains from data science are expected across all sectors, from industry and production to services and retail. In this context, we cite several macro-areas where data science applications are especially promising. In energy and environment , the digitization of the energy systems (from production to distribution) enables the acquisition of real-time, high-resolution data. Coupled with other data sources, such as weather data, usage patterns, and market data (accompanied by advanced analytics), efficiency levels can be increased immensely. The positive impact to the environment is also enhanced by geospatial data that help to understand how our planet and its climate are changing and to confront major issues such as global warming, preservation of the species, the role and effects of human activities.

The manufacturing and production sector with the growing investments into Industry 4.0 and smart factories with sensor-equipped machinery that are both intelligent and networked (see internet of things . Cyber-physical systems ) will be one of the major producers of data in the world. The application of data science into this sector will bring efficiency gains and predictive maintenance. Entirely new business models are expected since the mass production of individualized products becomes possible where consumers may have direct access to influence and control.

As already stated in Sect.  2.1 , data science will contribute to increasing efficiency in public administrations processes and healthcare. In the physical and the cyber-domain, security will be enhanced. From financial fraud to public security, data science will contribute to establishing a framework that enables a safe and secure digital economy. Big data exploitation will open up opportunities for innovative, self-organizing ways of managing logistical business processes. Deliveries could be based on predictive monitoring, using data from stores, semantic product memories, internet forums, and weather forecasts, leading to both economic and environmental savings. Let us also consider the impact of personalized services for creating real experiences for tourists. The analysis of real-time and context-aware data (with the help of historical and cultural heritage data) will provide customized information to each tourist, and it will contribute to the better and more efficient management of the whole tourism value chain.

3 Data science ethics

Data science creates great opportunities but also new risks. The use of advanced tools for data analysis could expose sensitive knowledge of individual persons and could invade their privacy. Data science approaches require access to digital records of personal activities that contain potentially sensitive information. Personal information can be used to discriminate people based on their presumed characteristics. Data-driven algorithms yield classification and prediction models of behavioral traits of individuals, such as credit score, insurance risk, health status, personal preferences, and religious, ethnic, or political orientation, based on personal data disseminated in the digital environment by users (with or often without their awareness). The achievements of data science are the result of re-interpreting available data for analysis goals that differ from the original reasons motivating data collection. For example, mobile phone call records are initially collected by telecom operators for billing and operational aims, but they can be used for accurate and timely demography and human mobility analysis at a country or regional scale. This re-purposing of data clearly shows the importance of legal compliance and data ethics technologies and safeguards to protect privacy and anonymity; to secure data; to engage users; to avoid discrimination and misuse; to account for transparency; and to the purpose of seizing the opportunities of data science while controlling the associated risks.

Several aspects should be considered to avoid to harm individual privacy. Ethical elements should include the: (i) monitoring of the compliance of experiments, research protocols, and applications with ethical and juridical standards; (ii) developing of big data analytics and social mining tools with value-sensitive design and privacy-by-design methodologies; (iii) boosting of excellence and international competitiveness of Europe’s big data research in safe and fair use of big data for research. It is essential to highlight that data scientists using personal and social data also through infrastructures have the responsibility to get acquainted with the fundamental ethical aspects relating to becoming a “data controller.” This aspect has to be considered to define courses for informing and training data scientists about the responsibilities, the possibilities, and the boundaries they have in data manipulation.

Recalling Fig.  2 , it is crucial to inject into the data science pipeline the ethical values of fairness : how to avoid unfair and discriminatory decisions; accuracy : how to provide reliable information; confidentiality : how to protect the privacy of the involved people and transparency : how to make models and decisions comprehensible to all stakeholders. This value-sensitive design has to be aimed at boosting widespread social acceptance of data science, without inhibiting its power. Finally, it is essential to consider also the impact of the General Data Protection Regulation (GDPR) on (i) companies’ duties and how these European companies should comply with the limits in data manipulation the Regulation requires; and on (ii) researchers’ duties and to highlight articles and recitals which specifically mention and explain how research is intended in GDPR’s legal system.

figure 3

The relationship between big and open data and how they relate to the broad concept of open government

We complete this section with another important aspect related to open data, i.e., accessible public data that people, companies, and organizations can use to launch new ventures, analyze patterns and trends, make data-driven decisions, and solve complex problems. All the definitions of open data include two features: (i) the data must be publicly available for anyone to use, and (ii) data must be licensed in a way that allows for its reuse. All over the world, initiatives are launched to make data open by government agencies and public organizations; listing them is impossible, but an UN initiative has to be mentioned. Global Pulse Footnote 6 meant to implement the vision for a future in which big data is harnessed safely and responsibly as a public good.

Figure 3 shows the relationships between open data and big data. Currently, the problem is not only that government agencies (and some business companies) are collecting personal data about us, but also that we do not know what data are being collected and we do not have access to the information about ourselves. As reported by the World Economic forum in 2013, it is crucial to understand the value of personal data to let the users make informed decisions. A new branch of philosophy and ethics is emerging to handle personal data related issues. On the one hand, in all cases where the data might be used for the social good (i.e., medical research, improvement of public transports, contrasting epidemics), and understanding the personal data value means to correctly evaluate the balance between public benefits and personal loss of protection. On the other hand, when data are aimed to be used for commercial purposes, the value mentioned above might instead translate into simple pricing of personal information that the user might sell to a company for its business. In this context, discrimination discovery consists of searching for a-priori unknown contexts of suspect discrimination against protected-by-law social groups, by analyzing datasets of historical decision records. Machine learning and data mining approaches may be affected by discrimination rules, and these rules may be deeply hidden within obscure artificial intelligence models. Thus, discrimination discovery consists of understanding whether a predictive model makes direct or indirect discrimination. DCube [ 43 ] is a tool for data-driven discrimination discovery, a library of methods on fairness analysis.

It is important to evaluate how a mining model or algorithm takes its decision. The growing field of methods for explainable machine learning provides and continuously expands a set of comprehensive tool-kits [ 21 ]. For example, X-Lib is a library containing state-of-the-art explanation methods organized within a hierarchical structure and wrapped in a similar fashion way such that they can be easily accessed and used from different users. The library provides support for explaining classification on tabular data and images and for explaining the logic of complex decision systems. X-Lib collects, among the others, the following collection of explanation methods: LIME [ 38 ], Anchor [ 39 ], DeepExplain that includes Saliency maps [ 44 ], Gradient * Input, Integrated Gradients, and DeepLIFT [ 46 ]. Saliency method is a library containing code for SmoothGrad [ 45 ], as well as implementations of several other saliency techniques: Vanilla Gradients, Guided Backpropogation, and Grad-CAM. Another improvement in this context is the use of robotics and AI in data preparation, curation, and in detecting bias in data, information and knowledge as well as in the misuse and abuse of these assets when it comes to legal, privacy, and ethical issues and when it comes to transparency and trust. We cannot rely on human beings to do these tasks. We need to exploit the power of robotics and AI to help provide the protections required. Data and information lawyers will play a key role in legal and privacy issues, ethical use of these assets, and the problem of bias in both algorithms and the data, information, and knowledge used to develop analytics solutions. Finally, we can state that data science can help to fill the gap between legislators and technology.

4 Big data ecosystem: the role of research infrastructures

Research infrastructures (RIs) play a crucial role in the advent and development of data science. A social mining experiment exploits the main components of data science depicted in Fig.  1 (i.e., data, infrastructures, analytical methods) to enable multidisciplinary scientists and innovators to extract knowledge and to make the experiment reusable by the scientific community, innovators providing an impact on science and society.

Resources such as data and methods help domain and data scientists to transform research or an innovation question into a responsible data-driven analytical process. This process is executed onto the platform, thus supporting experiments that yield scientific output, policy recommendations, or innovative proofs-of-concept. Furthermore, an operational ethical board’s stewardship is a critical factor in the success of a RI.

An infrastructure typically offers easy-to-use means to define complex analytical processes and workflows , thus bridging the gap between domain experts and analytical technology. In many instances, domain experts may become a reference for their scientific communities, thus facilitating new users engagement within the RI activities. As a collateral feedback effect, experiments will generate new relevant data, methods, and workflows that can be integrated into the platform by data scientists, contributing to the resource expansion of the RI. An experiment designed in a node of the RI and executed on the platform returns its results to the entire RI community.

Well defined thematic environments amplify new experiments achievements towards the vertical scientific communities (and potential stakeholders) by activating appropriate dissemination channels.

4.1 The SoBigData Research Infrastructure

The SoBigData Research Infrastructure Footnote 7 is an ecosystem of human and digital resources, comprising data scientists, analytics, and processes. As shown in Fig.  4 , SoBigData is designed to enable multidisciplinary scientists and innovators to realize social mining experiments and to make them reusable by the scientific communities. All the components have been introduced for implementing data science from raw data management to knowledge extraction, with particular attention to legal and ethical aspects as reported in Fig.  1 . SoBigData supports data science serving a cross-disciplinary community of data scientists studying all the elements of societal complexity from a data- and model-driven perspective.

Currently, SoBigData includes scientific, industrial, and other stakeholders. In particular, our stakeholders are data analysts and researchers (35.6%), followed by companies (33.3%) and policy and lawmakers (20%). The following sections provide a short but comprehensive overview of the services provided by SoBigData RI with special attention on supporting ethical and open data science [ 15 , 16 ].

4.1.1 Resources, facilities, and access opportunities

Over the past decade, Europe has developed world-leading expertise in building and operating e-infrastructures. They are large-scale, federated and distributed online research environments through which researchers can share access to scientific resources (including data, instruments, computing, and communications), regardless of their location. They are meant to support unprecedented scales of international collaboration in science, both within and across disciplines, investing in economy-of-scale and common behavior, policies, best practices, and standards. They shape up a common environment where scientists can create , validate , assess , compare , and share their digital results of science, such as research data and research methods, by using a common “digital laboratory” consisting of agreed-on services and tools.

figure 4

The SoBigData Research Infrastructure: an ecosystem of human and digital resources, comprising data scientists, analytical methods, and processes. SoBigData enables multidisciplinary scientists and innovators to carry out experiments and to make them reusable by the community

However, the implementation of workflows, possibly following Open Science principles of reproducibility and transparency, is hindered by a multitude of real-world problems. One of the most prominent is that e-infrastructures available to research communities today are far from being well-designed and consistent digital laboratories, neatly designed to share and reuse resources according to common policies, data models, standards, language platforms, and APIs. They are instead “patchworks of systems,” assembling online tools, services, and data sources and evolving to match the requirements of the scientific process, to include new solutions. The degree of heterogeneity excludes the adoption of uniform workflow management systems, standard service-oriented approaches, routine monitoring and accounting methods. The realization of scientific workflows is typically realized by writing ad hoc code, manipulating data on desktops, alternating the execution of online web services, sharing software libraries implementing research methods in different languages, desktop tools, web-accessible execution engines (e.g., Taverna, Knime, Galaxy).

The SoBigData e-infrastructure is based on D4Science services, which provides researchers and practitioners with a working environment where open science practices are transparently promoted, and data science practices can be implemented by minimizing the technological integration cost highlighted above.

D4Science is a deployed instance of the gCube Footnote 8 technology [ 4 ], a software conceived to facilitate the integration of web services, code, and applications as resources of different types in a common framework, which in turn enables the construction of Virtual Research Environments (VREs) [ 7 ] as combinations of such resources (Fig.  5 ). As there is no common framework that can be trusted enough, sustained enough, to convince resource providers that converging to it would be a worthwhile effort, D4Science implements a “system of systems.” In such a framework, resources are integrated with minimal cost, to gain in scalability, performance, accounting, provenance tracking, seamless integration with other resources, visibility to all scientists. The principle is that the cost of “participation” to the framework is on the infrastructure rather than on resource providers. The infrastructure provides the necessary bridges to include and combine resources that would otherwise be incompatible.

figure 5

D4Science: resources from external systems, virtual research environments, and communities

More specifically, via D4Science, SoBigData scientists can integrate and share resources such as datasets, research methods, web services via APIs, and web applications via Portlets. Resources can then be integrated, combined, and accessed via VREs, intended as web-based working environments tailored to support the needs of their designated communities, each working on a research question. Research methods are integrated as executable code, implementing WPS APIs in different programming languages (e.g., Java, Python, R, Knime, Galaxy), which can be executed via the Data Miner analytics platform in parallel, transparently to the users, over powerful and extensible clusters, and via simple VRE user interfaces. Scientists using Data Miner in the context of a VRE can select and execute the available methods and share the results with other scientists, who can repeat or reproduce the experiment with a simple click.

D4Science VREs are equipped with core services supporting data analysis and collaboration among its users: ( i ) a shared workspace to store and organize any version of a research artifact; ( ii ) a social networking area to have discussions on any topic (including working version and released artifacts) and be informed on happenings; ( iii ) a Data Miner analytics platform to execute processing tasks (research methods) either natively provided by VRE users or borrowed from other VREs to be applied to VRE users’ cases and datasets; and iv ) a catalogue-based publishing platform to make the existence of a certain artifact public and disseminated. Scientists operating within VREs use such facilities continuously and transparently track the record of their research activities (actions, authorship, provenance), as well as products and links between them (lineage) resulting from every phase of the research life cycle, thus facilitating publishing of science according to Open Science principles of transparency and reproducibility [ 5 ].

Today, SoBigData integrates the resources in Table  1 . By means of such resources, SoBigData scientists have created VREs to deliver the so-called SoBigData exploratories : Explainable Machine Learning , Sports Data Science , Migration Studies , Societal Debates , Well-being & Economy , and City of Citizens . Each exploratory includes the resources required to perform Data science workflows in a controlled and shared environment. Resources range from data to methods, described more in detail in the following, together with their exploitation within the exploratories.

All the resources and instruments integrate into SoBigData RI are structured in such a way as to operate within the confines of the current data protection law with the focus on General Data Protection Regulation (GDPR) and ethical analysis of the fundamental values involved in social mining and AI. Each item into the catalogue has specific fields for managing ethical issues (e.g., if a dataset contains personal info) and fields for describing and managing intellectual properties.

4.1.2 Data resources: social mining and big data ecosystem

SoBigData RI defines policies supporting users in the collection, description, preservation, and sharing of their data sets. It implements data science making such data available for collaborative research by adopting various strategies, ranging from sharing the open data sets with the scientific community at large, to share the data with disclosure restriction allowing data access within secure environments.

Several big data sets are available through SoBigData RI including network graphs from mobile phone call data; networks crawled from many online social networks, including Facebook and Flickr, transaction micro-data from diverse retailers, query logs both from search engines and e-commerce, society-wide mobile phone call data records, GPS tracks from personal navigation devices, survey data about customer satisfaction or market research, extensive web archives, billions of tweets, and data from location-aware social networks.

4.1.3 Data science through SoBigData exploratories

Exploratories are thematic environments built on top of the SoBigData RI. An exploratory binds datasets with social mining methods providing the research context for supporting specific data science applications by: (i) providing the scientific context for performing the application. This context can be considered a container for binding specific methods, applications, services, and datasets; (ii) stimulating communities on the effectiveness of the analytical process related to the analysis, promoting scientific dissemination, result sharing, and reproducibility. The use of exploratories promotes the effectiveness of the data science trough research infrastructure services. The following sections report a short description of the six SoBigData exploratories. Figure 6 shows the main thematic areas covered by each exploratory. Due to its nature, Explainable Machine Learning exploratory can be applied to each sector where a black-box machine learning approach is used. The list of exploratories (and the data and methods inside them) are updated continuously and continue to grow over time. Footnote 9

figure 6

SoBigData covers six thematic areas listed horizontally. Each exploratory covers more than one thematic area

City of citizens. This exploratory aims to collect data science applications and methods related to geo-referenced data. The latter describes the movements of citizens in a city, a territory, or an entire region. There are several studies and different methods that employ a wide variety of data sources to build models about the mobility of people and city characteristics in the scientific literature [ 30 , 32 ]. Like ecosystems, cities are open systems that live and develop utilizing flows of energy, matter, and information. What distinguishes a city from a colony is the human component (i.e., the process of transformation by cultural and technological evolution). Through this combination, cities are evolutionary systems that develop and co-evolve continuously with their inhabitants [ 24 ]. Cities are kaleidoscopes of information generated by a myriad of digital devices weaved into the urban fabric. The inclusion of tracking technologies in personal devices enabled the analysis of large sets of mobility data like GPS traces and call detail records.

Data science applied to human mobility is one of the critical topics investigated in SoBigData thanks to the decennial experience of partners in European projects. The study of human mobility led to the integration into the SoBigData of unique Global Positioning System (GPS) and call detail record (CDR) datasets of people and vehicle movements, and geo-referenced social network data as well as several mobility services: O/D (origin-destination) matrix computation, Urban Mobility Atlas Footnote 10 (a visual interface to city mobility patterns), GeoTopics Footnote 11 (for exploring patterns of urban activity from Foursquare), and predictive models: MyWay Footnote 12 (trajectory prediction), TripBuilder Footnote 13 (tourists to build personalized tours of a city). In human mobility, research questions come from geographers, urbanists, complexity scientists, data scientists, policymakers, and Big Data providers, as well as innovators aiming to provide applications for any service for the smart city ecosystem. The idea is to investigate the impact of political events on the well-being of citizens. This exploratory supports the development of “happiness” and “peace” indicators through text mining/opinion mining pipeline on repositories of online news. These indicators reveal that the level of crime of a territory can be well approximated by analyzing the news related to that territory. Generally, we study the impact of the economy on well-being and vice versa, e.g., also considering the propagation of shocks of financial distress in an economic or financial system crucially depends on the topology of the network interconnecting the different elements.

Well-being and economy. This exploratory tests the hypothesis that well-being is correlated to the business performance of companies. The idea is to combine statistical methods and traditional economic data (typically at low-frequency) with high-frequency data from non-traditional sources, such as, i.e., web, supermarkets, for now-casting economic, socioeconomic and well-being indicators. These indicators allow us to study and measure real-life costs by studying price variation and socioeconomic status inference. Furthermore, this activity supports studies on the correlation between people’s well-being and their social and mobility data. In this context, some basic hypothesis can be summarized as: (i) there are curves of age- and gender-based segregation distribution in boards of companies, which are characteristic to mean credit risk of companies in a region; (ii) low mean credit risk of companies in a region has a positive correlation to well-being; (iii) systemic risk correlates highly with well-being indices at a national level. The final aim is to provide a set of guidelines to national governments, methods, and indices for decision making on regulations affecting companies to improve well-being in the country, also considering effective policies to reduce operational risks such as credit risk, and external threats of companies [ 17 ].

Big Data, analyzed through the lenses of data science, provides means to understand our complex socioeconomic and financial systems. On the one hand, this offers new opportunities to measure the patterns of well-being and poverty at a local and global scale, empowering governments and policymakers with the unprecedented opportunity to nowcast relevant economic quantities and compare different countries, regions, and cities. On the other hand, this allows us to investigate the network underlying the complex systems of economy and finance, and it affects the aggregate output, the propagation of shocks or financial distress and systemic risk.

Societal debates. This exploratory employs data science approaches to answer research questions such as who is participating in public debates? What is the “big picture” response from citizens to a policy, election, referendum, or other political events? This kind of analysis allows scientists, policymakers, and citizens to understand the online discussion surrounding polarized debates [ 14 ]. The personal perception of online discussions on social media is often biased by the so-called filter bubble, in which automatic curation of content and relationships between users negatively affects the diversity of opinions available to them. Making a complete analysis of online polarized debates enables the citizens to be better informed and prepared for political outcomes. By analyzing content and conversations on social media and newspaper articles, data scientists study public debates and also assess public sentiment around debated topics, opinion diffusion dynamics, echo chambers formation and polarized discussions, fake news analysis, and propaganda bots. Misinformation is often the result of a distorted perception of concepts that, although unrelated, suddenly appear together in the same narrative. Understanding the details of this process at an early stage may help to prevent the birth and the diffusion of fake news. The misinformation fight includes the development of dynamical models of misinformation diffusion (possibly in contrast to the spread of mainstream news) as well as models of how attention cycles are accelerated and amplified by the infrastructures of online media.

Another important topic covered by this exploratory concerns the analysis of how social bots activity affects fake news diffusion. Determining whether a human or a bot controls a user account is a complex task. To the best of our knowledge, the only openly accessible solution to detect social bots is Botometer, an API that allows us to interact with an underlying machine learning system. Although Botometer has been proven to be entirely accurate in detecting social bots, it has limitations due to the Twitter API features: hence, an algorithm overcoming the barriers of current recipes is needed.

The resources related to Societal Debates exploratory, especially in the domain of media ecology and the fight against misinformation online, provide easy-to-use services to public bodies, media outlets, and social/political scientists. Furthermore, SoBigData supports new simulation models and experimental processes to validate in vivo the algorithms for fighting misinformation, curbing the pathological acceleration and amplification of online attention cycles, breaking the bubbles, and explore alternative media and information ecosystems.

Migration studies. Data science is also useful to understand the migration phenomenon. Knowledge about the number of immigrants living in a particular region is crucial to devise policies that maximize the benefits for both locals and immigrants. These numbers can vary rapidly in space and time, especially in periods of crisis such as wars or natural disasters.

This exploratory provides a set of data and tools for trying to answer some questions about migration flows. Through this exploratory, a data scientist studies economic models of migration and can observe how migrants choose their destination countries. A scientist can discover what is the meaning of “opportunities” that a country provides to migrants, and whether there are correlations between the number of incoming migrants and opportunities in the host countries [ 8 ]. Furthermore, this exploratory tries to understand how public perception of migration is changing using an opinion mining analysis. For example, social network analysis enables us to analyze the migrant’s social network and discover the structure of the social network for people who decided to start a new life in a different country [ 28 ].

Finally, we can also evaluate current integration indices based on official statistics and survey data, which can be complemented by Big Data sources. This exploratory aims to build combined integration indexes that take into account multiple data sources to evaluate integration on various levels. Such integration includes mobile phone data to understand patterns of communication between immigrants and natives; social network data to assess sentiment towards immigrants and immigration; professional network data (such as LinkedIn) to understand labor market integration, and local data to understand to what extent moving across borders is associated with a change in the cultural norms of the migrants. These indexes are fundamental to evaluate the overall social and economic effects of immigration. The new integration indexes can be applied with various space and time resolutions (small area methods) to obtain a complete image of integration, and complement official index.

Sports data science. The proliferation of new sensing technologies that provide high-fidelity data streams extracted from every game, is changing the way scientists, fans and practitioners conceive sports performance. The combination of these (big) data with the tools of data science provides the possibility to unveil complex models underlying sports performance and enables to perform many challenging tasks: from automatic tactical analysis to data-driven performance ranking; game outcome prediction, and injury forecasting. The idea is to foster research on sports data science in several directions. The application of explainable AI and deep learning techniques can be hugely beneficial to sports data science. For example, by using adversarial learning, we can modify the training plans of players that are associated with high injury risk and develop training plans that maximize the fitness of players (minimizing their injury risk). The use of gaming, simulation, and modeling is another set of tools that can be used by coaching staff to test tactics that can be employed against a competitor. Furthermore, by using deep learning on time series, we can forecast the evolution of the performance of players and search for young talents.

This exploratory examines the factors influencing sports success and how to build simulation tools for boosting both individual and collective performance. Furthermore, this exploratory describes performances employing data, statistics, and models, allowing coaches, fans, and practitioners to understand (and boost) sports performance [ 42 ].

Explainable machine learning. Artificial Intelligence, increasingly based on Big Data analytics, is a disruptive technology of our times. This exploratory provides a forum for studying effects of AI on the future society. In this context, SoBigData studies the future of labor and the workforce, also through data- and model-driven analysis, simulations, and the development of methods that construct human understandable explanations of AI black-box models [ 20 ].

Black box systems for automated decision making map a user’s features into a class that predicts the behavioral traits of individuals, such as credit risk, health status, without exposing the reasons why. Most of the time, the internal reasoning of these algorithms is obscure even to their developers. For this reason, the last decade has witnessed the rise of a black box society. This exploratory is developing a set of techniques and tools which allow data analysts to understand why an algorithm produce a decision. These approaches are designed not for discovering a lack of transparency but also for discovering possible biases inherited by the algorithms from human prejudices and artefacts hidden in the training data (which may lead to unfair or wrong decisions) [ 35 ].

5 Conclusions: individual and collective intelligence

The world’s technological per-capita capacity to store information has roughly doubled every 40 months since the 1980s [ 23 ]. Since 2012, every day 2.5 exabytes (2.5 \(\times \) 10 \(^18\) bytes) of data were created; as of 2014, every day 2.3 zettabytes (2.3 \(\times \) 10 \(^21\) bytes) of data were generated by Super-power high-tech Corporation worldwide. Soon zettabytes of useful public and private data will be widely and openly available. In the next years, smart applications such as smart grids, smart logistics, smart factories, and smart cities will be widely deployed across the continent and beyond. Ubiquitous broadband access, mobile technology, social media, services, and internet of think on billions of devices will have contributed to the explosion of generated data to a total global estimate of 40 zettabytes.

In this work, we have introduced data science as a new challenge and opportunity for the next years. In this context, we have tried to summarize in a concise way several aspects related to data science applications and their impacts on society, considering both the new services available and the new job perspectives. We have also introduced issues in managing data representing human behavior and showed how difficult it is to preserve personal information and privacy. With the introduction of SoBigData RI and exploratories, we have provided virtual environments where it is possible to understand the potentiality of data science in different research contexts.

Concluding, we can state that social dilemmas occur when there is a conflict between the individual and public interest. Such problems also appear in the ecosystem of distributed AI systems (based on data science tools) and humans, with additional difficulties due: on the one hand, to the relative rigidity of the trained AI systems and the necessity of achieving social benefit, and, on the other hand, to the necessity of keeping individuals interested. What are the principles and solutions for individual versus social optimization using AI, and how can an optimum balance be achieved? The answer is still open, but these complex systems have to work on fulfilling collective goals, and requirements, with the challenge that human needs change over time and move from one context to another. Every AI system should operate within an ethical and social framework in understandable, verifiable, and justifiable way. Such systems must, in any case, work within the bounds of the rule of law, incorporating protection of fundamental rights into the AI infrastructure. In other words, the challenge is to develop mechanisms that will result in the system converging to an equilibrium that complies with European values and social objectives (e.g., social inclusion) but without unnecessary losses of efficiency.

Interestingly, data science can play a vital role in enhancing desirable behaviors in the system, e.g., by supporting coordination and cooperation that is, more often than not, crucial to achieving any meaningful improvements. Our ultimate goal is to build the blueprint of a sociotechnical system in which AI not only cooperates with humans but, if necessary, helps them to learn how to collaborate, as well as other desirable behaviors. In this context, it is also essential to understand how to achieve robustness of the human and AI ecosystems in respect of various types of malicious behaviors, such as abuse of power and exploitation of AI technical weaknesses.

We conclude by paraphrasing Stephen Hawking in his Brief Answers to the Big Questions: the availability of data on its own will not take humanity to the future, but its intelligent and creative use will.

http://www.sdss3.org/collaboration/ .

e.g., https://www.nature.com/sdata/policies/repositories .

Responsible Data Science program: https://redasci.org/ .

https://emergency.copernicus.eu/ .

Nowcasting in economics is the prediction of the present, the very near future, and the very recent past state of an economic indicator.

https://www.unglobalpulse.org/ .

http://sobigdata.eu .

https://www.gcube-system.org/ .

https://sobigdata.d4science.org/catalogue-sobigdata .

http://www.sobigdata.eu/content/urban-mobility-atlas .

http://data.d4science.org/ctlg/ResourceCatalogue/geotopics_-_a_method_and_system_to_explore_urban_activity .

http://data.d4science.org/ctlg/ResourceCatalogue/myway_-_trajectory_prediction .

http://data.d4science.org/ctlg/ResourceCatalogue/tripbuilder .

Abitbol, J.L., Fleury, E., Karsai, M.: Optimal proxy selection for socioeconomic status inference on twitter. Complexity 2019 , 60596731–605967315 (2019). https://doi.org/10.1155/2019/6059673

Article   Google Scholar  

Amato, G., Candela, L., Castelli, D., Esuli, A., Falchi, F., Gennaro, C., Giannotti, F., Monreale, A., Nanni, M., Pagano, P., Pappalardo, L., Pedreschi, D., Pratesi, F., Rabitti, F., Rinzivillo, S., Rossetti, G., Ruggieri, S., Sebastiani, F., Tesconi, M.: How data mining and machine learning evolved from relational data base to data science. In: Flesca, S., Greco, S., Masciari, E., Saccà, D. (eds.) A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years, Studies in Big Data, vol. 31, pp. 287–306. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-61893-7_17

Chapter   Google Scholar  

Andrienko, G.L., Andrienko, N.V., Budziak, G., Dykes, J., Fuchs, G., von Landesberger, T., Weber, H.: Visual analysis of pressure in football. Data Min. Knowl. Discov. 31 (6), 1793–1839 (2017). https://doi.org/10.1007/s10618-017-0513-2

Article   MathSciNet   Google Scholar  

Assante, M., Candela, L., Castelli, D., Cirillo, R., Coro, G., Frosini, L., Lelii, L., Mangiacrapa, F., Marioli, V., Pagano, P., Panichi, G., Perciante, C., Sinibaldi, F.: The gcube system: delivering virtual research environments as-a-service. Future Gener. Comput. Syst. 95 , 445–453 (2019). https://doi.org/10.1016/j.future.2018.10.035

Assante, M., Candela, L., Castelli, D., Cirillo, R., Coro, G., Frosini, L., Lelii, L., Mangiacrapa, F., Pagano, P., Panichi, G., Sinibaldi, F.: Enacting open science by d4science. Future Gener. Comput. Syst. (2019). https://doi.org/10.1016/j.future.2019.05.063

Barabasi, A.L., Gulbahce, N., Loscalzo, J.: Network medicine: a network-based approach to human disease. Nature reviews. Genetics 12 , 56–68 (2011). https://doi.org/10.1038/nrg2918

Candela, L., Castelli, D., Pagano, P.: Virtual research environments: an overview and a research agenda. Data Sci. J. 12 , GRDI75–GRDI81 (2013). https://doi.org/10.2481/dsj.GRDI-013

Coletto, M., Esuli, A., Lucchese, C., Muntean, C.I., Nardini, F.M., Perego, R., Renso, C.: Sentiment-enhanced multidimensional analysis of online social networks: perception of the mediterranean refugees crisis. In: Proceedings of the 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM’16, pp. 1270–1277. IEEE Press, Piscataway, NJ, USA (2016). http://dl.acm.org/citation.cfm?id=3192424.3192657

Coscia, M., Rossetti, G., Giannotti, F., Pedreschi, D.: Uncovering hierarchical and overlapping communities with a local-first approach. TKDD 9 (1), 6:1–6:27 (2014). https://doi.org/10.1145/2629511

Cresci, S., Minutoli, S., Nizzoli, L., Tardelli, S., Tesconi, M.: Enriching digital libraries with crowdsensed data. In: P. Manghi, L. Candela, G. Silvello (eds.) Digital Libraries: Supporting Open Science—15th Italian Research Conference on Digital Libraries, IRCDL 2019, Pisa, Italy, 31 Jan–1 Feb 2019, Proceedings, Communications in Computer and Information Science, vol. 988, pp. 144–158. Springer (2019). https://doi.org/10.1007/978-3-030-11226-4_12

Cresci, S., Petrocchi, M., Spognardi, A., Tognazzi, S.: Better safe than sorry: an adversarial approach to improve social bot detection. In: P. Boldi, B.F. Welles, K. Kinder-Kurlanda, C. Wilson, I. Peters, W.M. Jr. (eds.) Proceedings of the 11th ACM Conference on Web Science, WebSci 2019, Boston, MA, USA, June 30–July 03, 2019, pp. 47–56. ACM (2019). https://doi.org/10.1145/3292522.3326030

Cresci, S., Pietro, R.D., Petrocchi, M., Spognardi, A., Tesconi, M.: Social fingerprinting: detection of spambot groups through dna-inspired behavioral modeling. IEEE Trans. Dependable Sec. Comput. 15 (4), 561–576 (2018). https://doi.org/10.1109/TDSC.2017.2681672

Furletti, B., Trasarti, R., Cintia, P., Gabrielli, L.: Discovering and understanding city events with big data: the case of rome. Information 8 (3), 74 (2017). https://doi.org/10.3390/info8030074

Garimella, K., De Francisci Morales, G., Gionis, A., Mathioudakis, M.: Reducing controversy by connecting opposing views. In: Proceedings of the 10th ACM International Conference on Web Search and Data Mining, WSDM’17, pp. 81–90. ACM, New York, NY, USA (2017). https://doi.org/10.1145/3018661.3018703

Giannotti, F., Trasarti, R., Bontcheva, K., Grossi, V.: Sobigdata: social mining & big data ecosystem. In: P. Champin, F.L. Gandon, M. Lalmas, P.G. Ipeirotis (eds.) Companion of the The Web Conference 2018 on The Web Conference 2018, WWW 2018, Lyon , France, April 23–27, 2018, pp. 437–438. ACM (2018). https://doi.org/10.1145/3184558.3186205

Grossi, V., Rapisarda, B., Giannotti, F., Pedreschi, D.: Data science at sobigdata: the european research infrastructure for social mining and big data analytics. I. J. Data Sci. Anal. 6 (3), 205–216 (2018). https://doi.org/10.1007/s41060-018-0126-x

Grossi, V., Romei, A., Ruggieri, S.: A case study in sequential pattern mining for it-operational risk. In: W. Daelemans, B. Goethals, K. Morik (eds.) Machine Learning and Knowledge Discovery in Databases, European Conference, ECML/PKDD 2008, Antwerp, Belgium, 15–19 Sept 2008, Proceedings, Part I, Lecture Notes in Computer Science, vol. 5211, pp. 424–439. Springer (2008). https://doi.org/10.1007/978-3-540-87479-9_46

Guidotti, R., Coscia, M., Pedreschi, D., Pennacchioli, D.: Going beyond GDP to nowcast well-being using retail market data. In: A. Wierzbicki, U. Brandes, F. Schweitzer, D. Pedreschi (eds.) Advances in Network Science—12th International Conference and School, NetSci-X 2016, Wroclaw, Poland, 11–13 Jan 2016, Proceedings, Lecture Notes in Computer Science, vol. 9564, pp. 29–42. Springer (2016). https://doi.org/10.1007/978-3-319-28361-6_3

Guidotti, R., Monreale, A., Nanni, M., Giannotti, F., Pedreschi, D.: Clustering individual transactional data for masses of users. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 Aug 2017, pp. 195–204. ACM (2017). https://doi.org/10.1145/3097983.3098034

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51 (5), 93:1–93:42 (2019). https://doi.org/10.1145/3236009

Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., Giannotti, F.: A survey of methods for explaining black box models. CoRR abs/1802.01933 (2018). arxiv: 1802.01933

Guidotti, R., Nanni, M., Rinzivillo, S., Pedreschi, D., Giannotti, F.: Never drive alone: boosting carpooling with network analysis. Inf. Syst. 64 , 237–257 (2017). https://doi.org/10.1016/j.is.2016.03.006

Hilbert, M., Lopez, P.: The world’s technological capacity to store, communicate, and compute information. Science 332 (6025), 60–65 (2011)

Kennedy, C.A., Stewart, I., Facchini, A., Cersosimo, I., Mele, R., Chen, B., Uda, M., Kansal, A., Chiu, A., Kim, K.g., Dubeux, C., Lebre La Rovere, E., Cunha, B., Pincetl, S., Keirstead, J., Barles, S., Pusaka, S., Gunawan, J., Adegbile, M., Nazariha, M., Hoque, S., Marcotullio, P.J., González Otharán, F., Genena, T., Ibrahim, N., Farooqui, R., Cervantes, G., Sahin, A.D., : Energy and material flows of megacities. Proc. Nat. Acad. Sci. 112 (19), 5985–5990 (2015). https://doi.org/10.1073/pnas.1504315112

Korjani, S., Damiano, A., Mureddu, M., Facchini, A., Caldarelli, G.: Optimal positioning of storage systems in microgrids based on complex networks centrality measures. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-35128-6

Lorini, V., Castillo, C., Dottori, F., Kalas, M., Nappo, D., Salamon, P.: Integrating social media into a pan-european flood awareness system: a multilingual approach. In: Z. Franco, J.J. González, J.H. Canós (eds.) Proceedings of the 16th International Conference on Information Systems for Crisis Response and Management, València, Spain, 19–22 May 2019. ISCRAM Association (2019). http://idl.iscram.org/files/valeriolorini/2019/1854-_ValerioLorini_etal2019.pdf

Lulli, A., Gabrielli, L., Dazzi, P., Dell’Amico, M., Michiardi, P., Nanni, M., Ricci, L.: Scalable and flexible clustering solutions for mobile phone-based population indicators. Int. J. Data Sci. Anal. 4 (4), 285–299 (2017). https://doi.org/10.1007/s41060-017-0065-y

Moise, I., Gaere, E., Merz, R., Koch, S., Pournaras, E.: Tracking language mobility in the twitter landscape. In: C. Domeniconi, F. Gullo, F. Bonchi, J. Domingo-Ferrer, R.A. Baeza-Yates, Z. Zhou, X. Wu (eds.) IEEE International Conference on Data Mining Workshops, ICDM Workshops 2016, 12–15 Dec 2016, Barcelona, Spain., pp. 663–670. IEEE Computer Society (2016). https://doi.org/10.1109/ICDMW.2016.0099

Nanni, M.: Advancements in mobility data analysis. In: F. Leuzzi, S. Ferilli (eds.) Traffic Mining Applied to Police Activities—Proceedings of the 1st Italian Conference for the Traffic Police (TRAP-2017), Rome, Italy, 25–26 Oct 2017, Advances in Intelligent Systems and Computing, vol. 728, pp. 11–16. Springer (2017). https://doi.org/10.1007/978-3-319-75608-0_2

Nanni, M., Trasarti, R., Monreale, A., Grossi, V., Pedreschi, D.: Driving profiles computation and monitoring for car insurance crm. ACM Trans. Intell. Syst. Technol. 8 (1), 14:1–14:26 (2016). https://doi.org/10.1145/2912148

Pappalardo, G., di Matteo, T., Caldarelli, G., Aste, T.: Blockchain inefficiency in the bitcoin peers network. EPJ Data Sci. 7 (1), 30 (2018). https://doi.org/10.1140/epjds/s13688-018-0159-3

Pappalardo, L., Barlacchi, G., Pellungrini, R., Simini, F.: Human mobility from theory to practice: Data, models and applications. In: S. Amer-Yahia, M. Mahdian, A. Goel, G. Houben, K. Lerman, J.J. McAuley, R.A. Baeza-Yates, L. Zia (eds.) Companion of The 2019 World Wide Web Conference, WWW 2019, San Francisco, CA, USA, 13–17 May 2019., pp. 1311–1312. ACM (2019). https://doi.org/10.1145/3308560.3320099

Pappalardo, L., Cintia, P., Ferragina, P., Massucco, E., Pedreschi, D., Giannotti, F.: Playerank: data-driven performance evaluation and player ranking in soccer via a machine learning approach. ACM TIST 10 (5), 59:1–59:27 (2019). https://doi.org/10.1145/3343172

Pappalardo, L., Vanhoof, M., Gabrielli, L., Smoreda, Z., Pedreschi, D., Giannotti, F.: An analytical framework to nowcast well-being using mobile phone data. CoRR abs/1606.06279 (2016). arxiv: 1606.06279

Pasquale, F.: The Black Box Society: The Secret Algorithms That Control Money and Information. Harvard University Press, Cambridge (2015)

Book   Google Scholar  

Piškorec, M., Antulov-Fantulin, N., Miholić, I., Šmuc, T., Šikić, M.: Modeling peer and external influence in online social networks: Case of 2013 referendum in croatia. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds.) Complex Networks & Their Applications VI. Springer, Cham (2018)

Google Scholar  

Ranco, G., Aleksovski, D., Caldarelli, G., Mozetic, I.: Investigating the relations between twitter sentiment and stock prices. CoRR abs/1506.02431 (2015). arxiv: 1506.02431

Ribeiro, M.T., Singh, S., Guestrin, C.: “why should I trust you?”: Explaining the predictions of any classifier. In: B. Krishnapuram, M. Shah, A.J. Smola, C.C. Aggarwal, D. Shen, R. Rastogi (eds.) Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 Aug 2016, pp. 1135–1144. ACM (2016). https://doi.org/10.1145/2939672.2939778

Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic explanations. In: S.A. McIlraith, K.Q. Weinberger (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, 2–7 Feb 2018, pp. 1527–1535. AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/-paper/view/16982

Rossetti, G., Milli, L., Rinzivillo, S., Sîrbu, A., Pedreschi, D., Giannotti, F.: Ndlib: a python library to model and analyze diffusion processes over complex networks. Int. J. Data Sci. Anal. 5 (1), 61–79 (2018). https://doi.org/10.1007/s41060-017-0086-6

Rossetti, G., Pappalardo, L., Pedreschi, D., Giannotti, F.: Tiles: an online algorithm for community discovery in dynamic social networks. Mach. Learn. 106 (8), 1213–1241 (2017). https://doi.org/10.1007/s10994-016-5582-8

Rossi, A., Pappalardo, L., Cintia, P., Fernández, J., Iaia, M.F., Medina, D.: Who is going to get hurt? predicting injuries in professional soccer. In: J. Davis, M. Kaytoue, A. Zimmermann (eds.) Proceedings of the 4th Workshop on Machine Learning and Data Mining for Sports Analytics co-located with 2017 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2017), Skopje, Macedonia, 18 Sept 2017., CEUR Workshop Proceedings, vol. 1971, pp. 21–30. CEUR-WS.org (2017). http://ceur-ws.org/Vol-1971/paper-04.pdf

Ruggieri, S., Pedreschi, D., Turini, F.: DCUBE: discrimination discovery in databases. In: A.K. Elmagarmid, D. Agrawal (eds.) Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, 6–10 June 2010, pp. 1127–1130. ACM (2010). https://doi.org/10.1145/1807167.1807298

Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps. CoRR abs/1312.6034 (2013). http://dblp.uni-trier.de/db/journals/corr/corr1312.html#SimonyanVZ13

Smilkov, D., Thorat, N., Kim, B., Viégas, F.B., Wattenberg, M.: Smoothgrad: removing noise by adding noise. CoRR abs/1706.03825 (2017). arxiv: 1706.03825

Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: D. Precup, Y.W. Teh (eds.) Proceedings of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 70, pp. 3319–3328. PMLR, International Convention Centre, Sydney, Australia (2017). http://proceedings.mlr.press/v70/sundararajan17a.html

Trasarti, R., Guidotti, R., Monreale, A., Giannotti, F.: Myway: location prediction via mobility profiling. Inf. Syst. 64 , 350–367 (2017). https://doi.org/10.1016/j.is.2015.11.002

Traub, J., Quiané-Ruiz, J., Kaoudi, Z., Markl, V.: Agora: Towards an open ecosystem for democratizing data science & artificial intelligence. CoRR abs/1909.03026 (2019). arxiv: 1909.03026

Vazifeh, M.M., Zhang, H., Santi, P., Ratti, C.: Optimizing the deployment of electric vehicle charging stations using pervasive mobility data. Transp Res A Policy Practice 121 (C), 75–91 (2019). https://doi.org/10.1016/j.tra.2019.01.002

Vermeulen, A.F.: Practical Data Science: A Guide to Building the Technology Stack for Turning Data Lakes into Business Assets, 1st edn. Apress, New York (2018)

Download references

Acknowledgements

This work is supported by the European Community’s H2020 Program under the scheme ‘INFRAIA-1-2014-2015: Research Infrastructures’, grant agreement #654024 ‘SoBigData: Social Mining and Big Data Ecosystem’ and the scheme ‘INFRAIA-01-2018-2019: Research and Innovation action’, grant agreement #871042 ’SoBigData \(_{++}\) : European Integrated Infrastructure for Social Mining and Big Data Analytics’

Open access funding provided by Università di Pisa within the CRUI-CARE Agreement.

Author information

Authors and affiliations.

CNR - Istituto Scienza e Tecnologia dell’Informazione A. Faedo, KDDLab, Pisa, Italy

Valerio Grossi & Fosca Giannotti

Department of Computer Science, University of Pisa, Pisa, Italy

Dino Pedreschi

CNR - Istituto Scienza e Tecnologia dell’Informazione A. Faedo, NeMIS, Pisa, Italy

Paolo Manghi, Pasquale Pagano & Massimiliano Assante

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Dino Pedreschi .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Grossi, V., Giannotti, F., Pedreschi, D. et al. Data science: a game changer for science and innovation. Int J Data Sci Anal 11 , 263–278 (2021). https://doi.org/10.1007/s41060-020-00240-2

Download citation

Received : 13 July 2019

Accepted : 15 December 2020

Published : 19 April 2021

Issue Date : May 2021

DOI : https://doi.org/10.1007/s41060-020-00240-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Responsible data science
  • Research infrastructure
  • Social mining
  • Find a journal
  • Publish with us
  • Track your research

dissertation on data science

Member-only story

Five Tips For Writing A Great Data Science Thesis

Write for your reader, not for yourself.

Wouter van Heeswijk, PhD

Wouter van Heeswijk, PhD

Towards Data Science

In this article, I will share some tips on how to improve your Data Science thesis . Over the years, I have supervised my share of Data Science thesis projects, ranging from Big Four firms to local SMEs and from multinational banks to software consultancies. The academic program I am active typically involves internships, in which data is utilized to resolve a corporate problem — think designing decision-support dashboards, detecting financial anomalies with machine learning algorithms, or improving real-time parcel routing. Although educational programs, conventions and thesis requirements vary wildly, I hope to offer some common guidelines for any student currently working on a Data Science thesis.

The article offers five guidance points, but may effectively be summarized in a single line:

“Write for your reader, not for yourself.”

Data Science is a complex field, and the myriad of algorithms, performance metrics and data structures is hard to fully grasp even for the most seasoned veteran. As such, your job as a writer is to help the reader as much as possible in digesting your research, guiding and clarifying wherever you can. Everyone can make matters more complicated, but to simplify…

Wouter van Heeswijk, PhD

Written by Wouter van Heeswijk, PhD

Assistant professor in Financial Engineering and Operations Research. Writing about reinforcement learning, optimization problems, and data science.

Text to speech

Dissertation Help UK : Online Dissertation Help

Click here to place an order for topic brief service to get instant approval from your professor.

99 Best Data Science Dissertation Topics

Table of Contents

What is a Data Science Dissertation?

A Data Science Dissertation is a research project where students explore the vast field of data science. This involves analyzing large sets of data, creating models, and finding patterns to solve problems or make decisions. In a data science dissertation, you might work on topics like machine learning, big data analytics, or predictive modeling. The goal is to contribute new insights or methods to the field of data science.

Why are Data Science Dissertation Topics Important?

Data science is one of the most in-demand fields today. Companies rely on data to make informed decisions, predict trends, and understand their customers better. By choosing a data science topic, you can explore real-world problems and provide solutions that can be applied in various industries like healthcare, finance, or technology. Your dissertation could help advance the field, making your research valuable and relevant.

Writing Tips for Data Science Dissertation

  • Select a Relevant Topic: Pick a topic that is current and has a practical application. This will make your research more meaningful and impactful.
  • Use Quality Data: Ensure you have access to high-quality and reliable data. Good data is crucial for accurate analysis and valid conclusions.
  • Explain Your Methods Clearly: Data science can be complex, so clearly explain your methods and why you chose them. This helps others understand and replicate your work.
  • Visualize Your Results: Use charts, graphs, and other visual tools to present your findings. This makes your dissertation easier to understand and more engaging.

List of Data Science Dissertation Topics

Data Science Dissertation Topics

Machine Learning and Artificial Intelligence

  • Enhancing Fraud Detection Systems using Deep Learning Algorithms
  • Personalized Recommendation Systems: A Comparative Analysis of Machine Learning Approaches
  • Predictive Modeling for Disease Diagnosis and Treatment

Big Data Analytics

  • Optimizing Supply Chain Management through Big Data Analytics
  • Sentiment Analysis on Social Media Data: Understanding Customer Perception
  • Big Data-driven Strategies for Urban Planning and Development

Natural Language Processing (NLP)

  • Automated Text Summarization Techniques: A Comparative Study
  • Language Translation Models: Challenges and Opportunities
  • Sentiment Analysis in Political Discourse: Uncovering Public Opinion

Data Mining and Knowledge Discovery

  • Association Rule Mining for Market Basket Analysis
  • Clustering Techniques for Customer Segmentation in E-commerce
  • Predictive Analytics in Stock Market Forecasting

Health Informatics

  • Predictive Modeling for Early Disease Detection
  • Wearable Devices and Remote Patient Monitoring: A Data-driven Approach
  • Data Privacy and Security in Healthcare Data Sharing Platforms

Business Intelligence and Analytics

  • Data-driven Decision Making in Marketing Campaigns
  • Customer Lifetime Value Prediction: A Machine Learning Approach
  • Performance Analytics for Business Process Optimization

IoT and Sensor Data Analytics

  • Smart Cities: Leveraging IoT Data for Urban Sustainability
  • Predictive Maintenance in Industrial IoT: Anomaly Detection Techniques
  • Environmental Monitoring using Sensor Networks: Challenges and Opportunities

Image and Video Analysis

  • Object Detection and Recognition in Surveillance Videos
  • Medical Image Analysis: Applications in Diagnosis and Treatment
  • Deep Learning Approaches for Facial Recognition Systems

Social Network Analysis

  • Influence Detection in Social Networks: A Graph-based Approach.
  • Community Detection and Analysis in Online Social Platforms
  • Fake News Detection using Social Network Analysis Techniques

Time Series Analysis

  • Forecasting Demand in Retail: Time Series Models for Sales Prediction
  • Financial Market Volatility Prediction using Time Series Analysis
  • Energy Consumption Forecasting: A Comparative Study of Forecasting Models

Spatial Data Analysis

  • Geographic Information Systems (GIS) for Urban Planning
  • Spatial-Temporal Analysis of Crime Patterns: A Case Study
  • Environmental Impact Assessment using Spatial Data Analysis Techniques

Bioinformatics

  • Genomic Data Analysis: Towards Precision Medicine
  • Protein Structure Prediction using Machine Learning Algorithms
  • Computational Drug Discovery: Opportunities and Challenges

Data Privacy and Ethics

  • Privacy-preserving Data Mining Techniques: Balancing Utility and Privacy
  • Ethical Considerations in AI-driven Decision-Making Systems
  • GDPR Compliance in Data-driven Businesses: Challenges and Solutions

Deep Learning Applications

  • Deep Reinforcement Learning for Autonomous Vehicles
  • Generative Adversarial Networks (GANs) for Synthetic Data Generation
  • Deep Learning Models for Natural Language Understanding

Blockchain and Data Science

  • Blockchain-enabled Data Sharing Platforms: Opportunities and Challenges
  • Decentralized Data Marketplaces: A Paradigm Shift in Data Economy
  • Security and Privacy in Blockchain-based Data Analytics
  • Computer Science Research Topics (Approved Titles)
  • Which topics are best for thesis in Computer Science?
  • Information Systems Dissertation Topics Ideas

Writing a data science dissertation is an exciting opportunity to dive deep into a topic that interests you. Whether you’re exploring machine learning algorithms , data mining techniques, or the ethical implications of data usage, your research can make a significant impact. Choose a topic that aligns with your interests and has real-world relevance and remember to explain your methods and results clearly.

1. What are some common data science dissertation topics?

Common topics include machine learning applications, big data analytics, data visualization techniques, and the impact of AI on data processing.

2. How do I choose a data science dissertation topic?

Choose a topic that you find interesting, has enough data available, and is relevant to current trends in the field of data science.

3. What tools do I need for a data science dissertation?

You may need tools like Python, R, SQL, and data visualization software like Tableau or Power BI.

4. How long should my data science dissertation be?

The length varies, but most data science dissertations are around 80 to 120 pages. Check your institution’s guidelines for specific requirements.

Data Science Dissertation Topics Brief Service

Are you struggling to find the perfect Data Science Dissertation Topic tailored to your interests and expertise? Our customized topics brief service is designed to provide personalized guidance and support in selecting a dissertation topic that aligns with your academic goals. Fill the form below to get started on your journey towards academic excellence in data science.

WhatsApp and Get 35% off promo code now!

Warning icon

DEPARTMENT OF STATISTICS AND DATA SCIENCE

Phd program, phd program overview.

The doctoral program in Statistics and Data Science is designed to provide students with comprehensive training in theory and methodology in statistics and data science, and their applications to problems in a wide range of fields. The program is flexible and may be arranged to reflect students' interests and career goals. Cross-disciplinary work is encouraged. The PhD program prepares students for careers as university teachers and researchers as well as research statisticians and data scientists in industry, government and the non-profit sector.

Requirements

Students are required to fulfill the Department requirements in addition to those specified by The Graduate School (TGS).

From the Graduate School’s webpage outlining the general requirements for a PhD :

In order to receive a doctoral degree, students must:

  • Complete all required coursework. .
  • Gain admittance to candidacy.
  • Submit a prospectus to be approved by a faculty committee.
  • Present a dissertation with original research. Review the Dissertation Publication page for more information.
  • Complete the necessary teaching requirement
  • Submit necessary forms to file for graduation
  • Complete degree requirements within the approved timeline

PhD degrees must be approved by the student's academic program. Consult with your program directly regarding specific degree requirements.

The Department requires that students in the Statistics and Data Science PhD program:

  • Meet the department minimum residency requirement of 2 years
  • STAT 344-0 Statistical Computing
  • STAT 350-0 Regression Analysis
  • STAT 353-0 Advanced Regression
  • STAT 415-0 I ntroduction to Machine Learning
  • STAT 420-1,2,3 Introduction to Statistical Theory and Methodology 1, 2, 3
  • STAT 430-1, 2 Probability for Statistical Inference 1, 2
  • STAT 440 Applied Stochastic Processes for Statistics
  • STAT 457-0 Applied Bayesian Inference

Students generally complete the required coursework during their first two years in the PhD program. *note that required courses changed in the 2021-22 academic year, previous required courses can be found at the end of this page.

  • Pass the Qualifying Exam. This comprehensive examination covers basic topics in statistics and data science and and is typically taken in fall quarter of the second year.

Pass the Prospectus presentation/examination and be admitted for PhD candidacy by the end of year 3 . The department requires that students must complete their Prospectus (proposal of dissertation topic) before the end of year 3, which is earlier than The Graduate School deadline of the end of year 4. The prospectus must be approved by a faculty committee comprised of a committee chair and a minimum of 2 other faculty members. Students usually first find an adviser through independent studies who will then typically serve as the committee chair. When necessary, exceptions may be made upon the approval of the committee chair and the director of graduate studies, to extend the due date of the prospectus exam until the end of year 4.

  • Successfully complete and defend a doctoral dissertation. After the prospectus is approved, students begin work on the doctoral dissertation, which must demonstrate an original contribution to a chosen area of specialization. A final examination (thesis defense) is given based on the dissertation. Students typically complete the PhD program in 5 years.
  • Attend all seminars in the department and participate in other research activities . In addition to these academic requirements, students are expected to participate in other research activities and attend all department seminars every year they are in the program.

Optional MS degree en route to PhD

Students admitted to the Statistics and Data Science PhD program can obtain an optional MS (Master of Science) degree en route to their PhD. The MS degree requires 12 courses: STAT 350-0 Regression Analysis, STAT 353 Advanced Regression, STAT 420-1,2,3 Introduction to Statistical Theory and Methodology 1, 2, 3, STAT 415-0 I ntroduction to Machine Learning , and at least 6 more courses approved by the department of which two must be 400 level STAT elective courses, no more than 3 can be approved non-STAT courses.

*Prior to 2021-2022, the course requirements for the PhD were:

  • STAT 351-0 Design and Analysis of Experiments
  • STAT 425 Sampling Theory and Applications
  • MATH 450-1,2 Probability 1, 2 or MATH 450-1 Probability 1 and IEMS 460-1,2 Stochastic Processes 1, 2
  • Six additional 300/400 graduate-level Statistics courses, at least two must be 400 -level

Warning icon

Thesis/Capstone for Master's in Data Science | Northwestern SPS - Northwestern School of Professional Studies

  • Post-baccalaureate
  • Undergraduate
  • Professional Development
  • Pre-College
  • Center for Public Safety
  • Get Information

SPS Logo

Data Science

Capstone and thesis overview.

Capstone and thesis are similar in that they both represent a culminating, scholarly effort of high quality. Both should clearly state a problem or issue to be addressed. Both will allow students to complete a larger project and produce a product or publication that can be highlighted on their resumes. Students should consider the factors below when deciding whether a capstone or thesis may be more appropriate to pursue.

A capstone is a practical or real-world project that can emphasize preparation for professional practice. A capstone is more appropriate if:

  • you don't necessarily need or want the experience of the research process or writing a big publication
  • you want more input on your project, from fellow students and instructors
  • you want more structure to your project, including assignment deadlines and due dates
  • you want to complete the project or graduate in a timely manner

A student can enroll in MSDS 498 Capstone in any term. However, capstone specialization courses can provide a unique student experience and may be offered only twice a year. 

A thesis is an academic-focused research project with broader applicability. A thesis is more appropriate if:

  • you want to get a PhD or other advanced degree and want the experience of the research process and writing for publication
  • you want to work individually with a specific faculty member who serves as your thesis adviser
  • you are more self-directed, are good at managing your own projects with very little supervision, and have a clear direction for your work
  • you have a project that requires more time to pursue

Students can enroll in MSDS 590 Thesis as long as there is an approved thesis project proposal, identified thesis adviser, and all other required documentation at least two weeks before the start of any term.

From Faculty Director, Thomas W. Miller, PhD

Tom Miller

Capstone projects and thesis research give students a chance to study topics of special interest to them. Students can highlight analytical skills developed in the program. Work on capstone and thesis research projects often leads to publications that students can highlight on their resumes.”

A thesis is an individual research project that usually takes two to four terms to complete. Capstone course sections, on the other hand, represent a one-term commitment.

Students need to evaluate their options prior to choosing a capstone course section because capstones vary widely from one instructor to the next. There are both general and specialization-focused capstone sections. Some capstone sections offer in individual research projects, others offer team research projects, and a few give students a choice of individual or team projects.

Students should refer to the SPS Graduate Student Handbook for more information regarding registration for either MSDS 590 Thesis or MSDS 498 Capstone.

Capstone Experience

If students wish to engage with an outside organization to work on a project for capstone, they can refer to this checklist and lessons learned for some helpful tips.

Capstone Checklist

  • Start early — set aside a minimum of one to two months prior to the capstone quarter to determine the industry and modeling interests.
  • Networking — pitch your idea to potential organizations for projects and focus on the business benefits you can provide.
  • Permission request — make sure your final project can be shared with others in the course and the information can be made public.
  • Engagement — engage with the capstone professor prior to and immediately after getting the dataset to ensure appropriate scope for the 10 weeks.
  • Teambuilding — recruit team members who have similar interests for the type of project during the first week of the course.

Capstone Lesson Learned

  • Access to company data can take longer than expected; not having this access before or at the start of the term can severely delay the progress
  • Project timeline should align with coursework timeline as closely as possible
  • One point of contact (POC) for business facing to ensure streamlined messages and more effective time management with the organization
  • Expectation management on both sides: (business) this is pro-bono (students) this does not guarantee internship or job opportunities
  • Data security/masking not executed in time can risk the opportunity completely

Publication of Work

Northwestern University Libraries offers an option for students to publish their master’s thesis or capstone in Arch, Northwestern’s open access research and data repository.

Benefits for publishing your thesis:

  • Your work will be indexed by search engines and discoverable by researchers around the world, extending your work’s impact beyond Northwestern
  • Your work will be assigned a Digital Object Identifier (DOI) to ensure perpetual online access and to facilitate scholarly citation
  • Your work will help accelerate discovery and increase knowledge in your subject domain by adding to the global corpus of public scholarly information

Get started:

  • Visit Arch online
  • Log in with your NetID
  • Describe your thesis: title, author, date, keywords, rights, license, subject, etc.
  • Upload your thesis or capstone PDF and any related supplemental files (data, code, images, presentations, documentation, etc.)
  • Select a visibility: Public, Northwestern-only, Embargo (i.e. delayed release)
  • Save your work to the repository

Your thesis manuscript or capstone report will then be published on the MSDS page. You can view other published work here .

For questions or support in publishing your thesis or capstone, please contact [email protected] .

Harvard University Theses, Dissertations, and Prize Papers

The Harvard University Archives ’ collection of theses, dissertations, and prize papers document the wide range of academic research undertaken by Harvard students over the course of the University’s history.

Beyond their value as pieces of original research, these collections document the history of American higher education, chronicling both the growth of Harvard as a major research institution as well as the development of numerous academic fields. They are also an important source of biographical information, offering insight into the academic careers of the authors.

Printed list of works awarded the Bowdoin prize in 1889-1890.

Spanning from the ‘theses and quaestiones’ of the 17th and 18th centuries to the current yearly output of student research, they include both the first Harvard Ph.D. dissertation (by William Byerly, Ph.D . 1873) and the dissertation of the first woman to earn a doctorate from Harvard ( Lorna Myrtle Hodgkinson , Ed.D. 1922).

Other highlights include:

  • The collection of Mathematical theses, 1782-1839
  • The 1895 Ph.D. dissertation of W.E.B. Du Bois, The suppression of the African slave trade in the United States, 1638-1871
  • Ph.D. dissertations of astronomer Cecilia Payne-Gaposchkin (Ph.D. 1925) and physicist John Hasbrouck Van Vleck (Ph.D. 1922)
  • Undergraduate honors theses of novelist John Updike (A.B. 1954), filmmaker Terrence Malick (A.B. 1966),  and U.S. poet laureate Tracy Smith (A.B. 1994)
  • Undergraduate prize papers and dissertations of philosophers Ralph Waldo Emerson (A.B. 1821), George Santayana (Ph.D. 1889), and W.V. Quine (Ph.D. 1932)
  • Undergraduate honors theses of U.S. President John F. Kennedy (A.B. 1940) and Chief Justice John Roberts (A.B. 1976)

What does a prize-winning thesis look like?

If you're a Harvard undergraduate writing your own thesis, it can be helpful to review recent prize-winning theses. The Harvard University Archives has made available for digital lending all of the Thomas Hoopes Prize winners from the 2019-2021 academic years.

Accessing These Materials

How to access materials at the Harvard University Archives

How to find and request dissertations, in person or virtually

How to find and request undergraduate honors theses

How to find and request Thomas Temple Hoopes Prize papers

How to find and request Bowdoin Prize papers

  • email: Email
  • Phone number 617-495-2461

Related Collections

Harvard faculty personal and professional archives, harvard student life collections: arts, sports, politics and social life, access materials at the harvard university archives.

  • Dissertation Proofreading and Editing
  • Dissertation Service
  • Dissertation Proposal Service
  • Dissertation Chapter
  • Dissertation Topic and Outline
  • Statistical Analysis Services
  • Model Answers and Exam Notes
  • Dissertation Samples
  • Essay Writing Service
  • Assignment Service
  • Report Service
  • Coursework Service
  • Literature Review Service
  • Reflective Report Service
  • Presentation Service
  • Poster Service
  • Criminal Psychology Dissertation Topics | List of Trending Ideas With Research Aims
  • Cognitive Psychology Dissertation Topics | 10 Top Ideas For Research in 2024
  • Social Psychology Dissertation Topics | 10 Latest Research Ideas
  • Top 10 Clinical Psychology Dissertation Topics with Research Aims
  • Educational Psychology Dissertation Topics | 10 Interesting Ideas For Research
  • Customer Service Dissertation Topics | List of Latest Ideas For Students
  • 15 Interesting Music Dissertation Topics
  • Business Intelligence Dissertation Topics | List of Top Ideas With Research Aims
  • Physical Education Dissertation Topics | 15 Interesting Title Examples
  • 15 Top Forensic Science Dissertation Topics with Research Aims
  • Islamic Finance Dissertation Topics | List of 15 Top Ideas With Research Aims
  • Dissertation Examples
  • Dissertation Proposal Examples
  • Essay Examples
  • Report Examples
  • Coursework Examples
  • Assignment Examples
  • Literature Review Examples
  • Dissertation Topic and Outline Examples
  • Dissertation Chapter Examples
  • Dissertation Help
  • Dissertation Topics
  • Academic Library
  • Assignment Plagiarism Checker
  • Coursework Plagiarism Checke
  • Dissertation Plagiarism Checker
  • Thesis Plagiarism Checker
  • Report Plagiarism Checke
  • Plagiarism Remover Service
  • Plagiarism Checker Free Service
  • Turnitin Plagiarism Checker Free Service
  • Free Plagiarism Checker for Students
  • Difference Between Paraphrasing & Plagiarism
  • Free Similarity Checker
  • How Plagiarism Checkers Work?
  • How to Cite Sources to Avoid Plagiarism?
  • Free Topics
  • Get a Free Quote

Premier-Dissertations-Logo-1

  • Report Generating Service
  • Model Answers and Exam Notes Writing
  • Reflective or Personal Report Writing
  • Poster Writing
  • Literature Review Writing
  • Premier Sample Dissertations
  • Course Work
  • Cognitive Psychology Dissertation Topics
  • Physical Education Dissertation Topics
  • 15 Top Forensic Science Dissertation Topics
  • Top 10 Clinical Psychology Dissertation Topics
  • Islamic Finance Dissertation Topics
  • Social Psychology Dissertation Topics
  • Educational Psychology Dissertation Topics
  • Business Intelligence Dissertation Topics
  • Customer Service Dissertation Topics
  • Criminal Psychology Dissertation Topics

dissertation on data science

  • Literature Review Example
  • Report Example
  • Assignment Example
  • Coursework Example

dissertation on data science

  • Coursework Plagiarism Checker
  • Turnitin Plagiarism Checker
  • Paraphrasing and Plagiarism
  • Best Dissertation Plagiarism Checker
  • Report Plagiarism Checker
  • Similarity Checker
  • Plagiarism Checker Free
  • FREE Topics

Get an experienced writer start working

Review our examples before placing an order, learn how to draft academic papers, 15 amazing data science dissertation topics and ideas for students.

Research Citations A Practical Guide to Citing Your Sources Correctly

Research Citations: Navigating the Essentials of Proper Citation

dissertation on data science

How to Craft an Exceptional Concept Paper: A Comprehensive Guide

dissertation on data science

Data science is an interdisciplinary field that combines statistical and computational methods to extract insights and knowledge from data. Students in this field study statistics, programming, machine learning, data visualization, and data management using tools like Python, R, Tableau, PowerBI, AWS Azure, and programming languages. For ease of students, we offer a list of trending data science dissertation topics .

Review Our Quality Computer Science Dissertation Examples 

Premier Dissertations has produced a list of the latest dissertation topics in data science for 2024 .

If you would like to choose any topic from the list below, simply drop us a WhatsApp or an Email .

You may also like to review;

Science Dissertation Topics | Neuroscience Dissertation Topics  

3-Step Dissertation Process!

dissertation on data science

Get 3+ Topics

dissertation on data science

Dissertation Proposal

dissertation on data science

Get Final Dissertation

List of latest data science research topics 2024, quality research topics in data science, trending thesis topics in data science for 2024, how does it work .

dissertation on data science

Fill the Form

dissertation on data science

Writer Starts Working

dissertation on data science

3+ Topics Emailed!

Get expert advice before deciding topics in data science .

Getting expert advice before finalizing your data science project topics is crucial. Experts can guide you in choosing a relevant and feasible research area, ensuring your study aligns with current trends and challenges in data science. Their insights can help you refine your ideas and make informed decisions, setting the foundation for a successful and impactful dissertation. Seeking expert advice is like having a reliable map for your research journey, helping you navigate the complexities of data science.

Review Our Full List of Latest Research Topics  

For more data science thesis topics, please keep checking our website as we keep adding new topics to our existing list of titles. GOOD LUCK!

Get an Immediate Response

Discuss your requirements with our writers

WhatsApp Us Email Us Chat with Us

Get 3+ Free Data Science Dissertation Topics within 24 hours

Your Number

Academic Level Select Academic Level Undergraduate Masters PhD

Area of Research

Discover More:

Business Administration and MBA Dissertation Topics Construction Engineering Dissertation Topics Environment and Sustainability Dissertation Topics Project Management Dissertation Topics COVID-19 Dissertation Topics Business Management Dissertation Topics Health and Safety Dissertation Topics Cryptocurrency Dissertation Topics Cyber Security Dissertation Topics Education Dissertation-Topics

admin farhan

admin farhan

Related posts.

GIS Project Ideas

110 Best GIS Project Ideas for Developers in 2024

DNA Model Project Ideas

140 Creative DNA Model Project Ideas for Students

SAE Project Ideas

150 SAE Project Ideas for Students

Comments are closed.

15 Amazing Data Science Dissertation Topics and Ideas For Students

About Us arrow_drop_down expand_more

  • News Releases

Our Values arrow_drop_down expand_more

  • Diversity & Inclusion
  • Accessibility
  • Slavery Act Statement

Product Families arrow_drop_down expand_more

dissertation on data science

Content Solutions expand_more

  • Books and Ebooks
  • Dissertations
  • News & Newspapers
  • Primary Sources
  • Streaming Video

Products by Subject expand_more

  • Health & Medicine
  • History & Social Change
  • Interdisciplinary
  • Science & Technology
  • Social Sciences

Popular Products expand_more

Proquest one academic.

  • ProQuest One Business
  • ProQuest One Education
  • ProQuest One Psychology
  • ProQuest Black Studies
  • Ebooks Offers for Libraries

Library Management expand_more

Discovery services expand_more, resource sharing expand_more, course resource lists expand_more, research management expand_more, mobile solutions expand_more.

  • Innovative Mobile

Libraries We Serve expand_more

  • Academic Solutions for universities, colleges, and community colleges of all sizes.
  • Public Solutions for librarians supporting patrons of public libraries.
  • K-12 Solutions for elementary schools, primary schools and high schools.
  • Community College Solutions for community colleges, trade schools and two year programs.
  • Government Solutions for governmental affairs offices, patent examiners, and grants administrators.
  • Corporate Solutions for professionals in the pharmaceutical, legal industries and more.

Solutions For expand_more

  • DEI E-Resources
  • Print to Electronic
  • Reclaiming Your Space
  • Library Management
  • Library Management – Public Libraries
  • Community Engagement
  • Content Discovery
  • Research Repository
  • Digital Preservation
  • Resource Sharing
  • Document Delivery
  • Course Resources

Account Support expand_more

  • Setup and Support
  • Access Questions
  • Renewing a Product
  • Paying an Invoice
  • Get Usage Data: ProQuest
  • Get Usage Data: Alexander Street
  • Submitting Dissertations
  • Idea Exchange
  • ProQuest Status Page

Tools & Resources expand_more

  • Find a Title List
  • Accessibility Documentation
  • Open Access

Browse Collections by Subject expand_more

I want to expand_more.

  • Start my Research
  • Start Text & Data Mining
  • Find Research Funding
  • Keep up with Research News
  • Showcase Research
  • See Upcoming Webinars
  • Contact Support

I’m Interested In expand_more

  • Submitting a Dissertation
  • Purchasing a Dissertation
  • Assembling Course Materials
  • Implementing a Mobile Campus App

Insights expand_more

How text and data mining enables digital literacy in the classroom.

Read about the University of Sydney’s journey to integrate text and data mining (TDM) into its undergraduate courses and incorporate it across disciplines

Meeting Your Needs expand_more

  • Graduate Students
  • Graduate Administrators

Products & Services expand_more

Etd dissemination.

  • Dissertation & Theses Global
  • ETD Dashboard

Resources expand_more

  • eLearning Modules
  • Expert Advice Articles

Dissertations News expand_more

  • Top 25 Most-Accessed Dissertations
  • Dissertations Award Winners

Are you a researcher looking for scholarly content? Try searching our platform here...

Language preference

Do you want set this as your default language ?

Connect with ProQuest

Proquest dissertations & theses global, contact sales.

Thank you for contacting ProQuest. A member of our Sales team will respond to you within one business day.  For immediate assistance please call +1-877-779-6768

Privacy Policy

Uncover the Undiscovered

The ProQuest Dissertations & Theses Global (PQDT) ™ database is the world's most comprehensive curated collection of multi-disciplinary dissertations and theses from around the world, offering over 5 million citations and 3 million full-text works from thousands of universities.

Within dissertations and theses is a wealth of scholarship, yet it is often overlooked because most go unpublished. Uncover new ideas and innovations with more confidence and efficiency. ProQuest Dissertations & Theses Global delivers a focused path for researchers by tapping into a global network of connected research.

Dissertation references can be a treasure trove for obscure topics, here students discover shorter works like articles.

Scott Dennis, Librarian Core Electronic Resources, University of Michigan

Connecting Global Scholarship

Disseminating since 1939

Disseminating since 1939

Disseminating graduate works since 1939, and is the largest editorially curated repository of dissertations and theses.

5+ million works

5+ million works

A multi-disciplinary collection of over 5 million citations and 3 million full text works.

250,000 Annually

250,000 Annually

The database increases in size by 250,000 works each year.

4M Researchers

4M Researchers

ProQuest Dissertations & Theses Global is used by over 4 million researchers at 3,100+ institutions around the world.

Customer Resources

Find database content updates, popular training, troubleshooting and how-to resources

Find training and informational resources

Order a dissertation title

Use premade graphics, social media posts, posters, news releases and learning content to inform students, researchers, and faculty of the tools available in your subscription

Short Description

ProQuest Dissertations & Theses (PQDT) Global provides visibility of cutting-edge research from the world’s premier universities.

ProQuest’s vast collection of >5.5million post graduate dissertations and theses now discoverable on Web of Science

ProQuest Dissertations and Theses Global with the Web of Science™ enables researchers to seamlessly uncover early career, post-graduate research in the form of more than 5.5 million dissertations and theses from over 4,100 institutions from more than 60 countries, alongside journal articles, conference proceedings, research data, books, preprints and patents.

The integration and introduction of the ProQuest Dissertations & Theses Citation Index , eliminates the need for researchers to search multiple databases, allowing them to streamline their workflow and focus more on their academic success and research advancements.

To further enhance accessibility, direct full text linking from the Web of Science to the ProQuest platform is available for joint subscribers of the Web of Science and ProQuest Dissertations and Theses Global.

Navigating ProQuest Dissertations & Theses Citation Index

DISCOVER unique scholarship

  • Provides credible research on unique, niche, and trending topics, often not published elsewhere
  • Provides access to global and diverse perspectives, helping to close diversity gaps in mainstream publishing channels
  • Removes friction and obstacles from the research process by making full text available in one location
  • Retrieves equitable search results, which places equal value on quality scholarship no matter where it is from

UNCOVER the value of dissertations

  • Introduces users to new source types
  • Reaches more students, helps more users in a virtual environment
  • Addresses user needs immediately when they need it
  • Nurtures career aspirations in academia

ProQuest Dissertations & Theses Global home page

FOCUS your research path

Citation Connections are the next step in the evolution of the ProQuest Platform, moving the recommender functionality beyond standard keyword lists towards technology that leverages citation data, bibliometrics, and knowledge graph technology. Focus your research path by finding the most relevant and influential works faster.

  • Supports researchers to become more efficient and effective.
  • Leads researchers of all levels quickly to the most relevant, credible sources.
  • Provides a focused path to building comprehensive foundational knowledge in any research area.
  • Integrates with other library resources, enhances the value of other ProQuest subscriptions by providing insights into how the research is connected.

Success Story

Progressing STEM Studies with a Critical Primary Research Source

Progressing STEM Studies with a Critical Primary Research Source

Author, Technologist, and Doctoral Student, Ida Joiner shares her story on leveraging dissertations to engage with current trends, cite a comprehensive foundation and build towards her own research goals.

 Avoiding Bias by Starting at the Source

Avoiding Bias by Starting at the Source

Dr. Terri D. Pigott, Ph.D., of the School of Public Health at the College of Education, Georgia State University, on Avoiding Bias by Starting at the Source.

Testimonials

Professor Terri Pigott Ph.D. discusses the expectations she presents to her students on meta-analysis and unbiased research requirements and how the use of ProQuest Dissertations & Theses Global helps to ensure that comprehensive data sets are included in new research outputs.

Using Dissertations as a Primary Source

Student researcher and published author Ida Joiner discusses how she uses ProQuest Dissertations & Theses Global as a core resource that helps her to build towards her own research goals.

Improving Diversity in Curriculum by Uncovering Unheard Voices

Improving Diversity in Curriculum by Uncovering Unheard Voices

Psychology Professors and Research Scientists come together to build a course and write a supplemental text for Psychology curriculum emphasizing the dissertations by women of color prior to 1980, filling research gaps in the early history of psychology.

The Erasure of Drag Contribution in Performance History

The Erasure of Drag Contribution in Performance History

Dr. Lady J, Ph.D., documents the historical impact, influence, contributions that drag performers have made to politics, music, film, fashion, and popular culture in her dissertation. Her goal is to document and make this history available for broad educational outreach.

Text and Data Mining Projects

ProQuest Dissertations & Theses Global is one of the most requested data-sets for text and data mining because of its broad historic to present-day coverage and deep and comprehensive data results found in the full-text records.  TDM Studio can be used alongside PQDT to easily and efficiently extract data and analyze it. See the list below for articles and projects published by scholars who used ProQuest Dissertations & Theses Global data:

  • TDM Studio ProQuest Dissertations & Theses Global Case Studies
  • Mapping Research Trends with ProQuest Dissertations & Theses (Univ. North Carolina)
  • Indiana University using Dissertations Data for Research
  • ProQuest Dissertation Database Provides Critical Information for Research Projects Across the US
  • City University of New York

hands typing on a laptop, purple icons  and gradient overlay

Trends in the Evolution of Research and Doctoral Education

Bruce A. Weinberg, Ph.D., Professor of Economics and Public Affairs from The Ohio State University shares how text and data mining of ProQuest Dissertations & Theses Global allows researchers to understand doctoral career trajectory patterns.

Improving Graduate Student Outcomes

Improving Graduate Student Outcomes

Dr. Jearl (Ken) Helvey, Assistant Professor of Education – Doctoral Program at Texas Wesleyan University on how incorporating dissertations into the curriculum improved the doctoral student success at Texas Wesleyan University.

Related Products

TDM Studio

Empower researchers to uncover new connections and make new discoveries using TDM Studio, a new solution for text and data mining (TDM). From the initial idea to the final output, TDM Studio puts the power of text and data mining directly in the researcher’s hands.

ProQuest One Academic

ProQuest One Academic brings together four core multi-disciplinary products, allowing access to the world’s largest curated collection of journals, ebooks, dissertations, news and video.

ETD Dissemination

Including dissertations and theses in ProQuest means amplifying your research by making it available in a unified repository

Brown University Homepage

IAPA Thesis Writers Guide to Data

Introduction.

  • Find social science data
  • Analyze data

Social Science Data Librarian

Profile Photo

This guide will introduce you to resources and services to support your thesis project. We specialize in social science data + scholarly resources, and can help you get what you need for your projects.

We have resources to support you along the research process, including:

  • Find social science data: datasets, databases/platforms, API, text data
  • Analyze social science data: coding, mixed methods, stats support
  • Cite data:  resources on the (notoriously tricky) process of citing datasets

Navigate to the menu links on the left to go deeper into each topic.

Ask questions to your librarian

Welcome! As a Social Science Data Librarian, I provide support to learners and researchers in sociology. You are welcome to reach out to me at any point - whether it's about an assignment, research project, dataset or tool, or something else.

Send an email:  You can reach out with your question at:  [email protected]

Book an appointment:  You can use this self-service link to book a time:  Book an appointment during office hours.

Keep in mind: Brown students at ALL levels report they are still learning to conduct research and navigate resources. You're not alone! We're here to help!

More about your library

Access to all e-resources: 

You can access all electronic resources linked form this guide when you are physically on campus, logged in via Shibboleth, or using the Brown VPN.

  • Eresources and off-campus access service

Free New York Times / Wall Street Journal access!

Did you know that as a Brown student, faculty, or staff member, you have full access to the NYT and WSJ? It's a nice perk! Learn how to set this up:

  • Get access to the New York Times
  • Get access to the Wall Street Journal

Learn new skills to help with your studies and research:

  • Events at Brown Library

Unable to find a book, or access an article?

Request the library purchase an item for our collection

  • Suggest a library purchase
  • Next: Find social science data >>
  • Last Updated: Sep 18, 2024 5:05 PM
  • URL: https://libguides.brown.edu/iapadata

moBUL - Mobile Brown University Library

Brown University Library  |  Providence, RI 02912  |  (401) 863-2165  |  Contact  |  Comments  |  Library Feedback  |  Site Map

Library Intranet

Beware of fake email, SMS and WhatsApp messages: check before clicking. Read more

Nanyang Technological University

College of Computing and Data Science

How can we help you.

programmes - persona

Financial Matters

dissertation on data science

Student Exchange

Student life - persona

Student Life

Students with their laptops in a seminar room

Overseas exchanges

Students studying in NTU's Library

Course finder

dissertation on data science

Alumni events

dissertation on data science

Alumni stories

dissertation on data science

Professional development

dissertation on data science

Alumni discounts

career

Research Focus

dissertation on data science

Research Hub

dissertation on data science

Academic partners

Research collaborations.

dissertation on data science

Information for Suppliers

dissertation on data science

Suppliers User Guide for Ariba

Singapore national runner-up for james dyson award 2024.

dissertation on data science

A team of students, including Shrivardhan Goenka (Year 3, CSC¹) and Yajat Gulati (Year 3, CSC¹) from NTU, has been crowned as Singapore National Runner-up at the prestigious James Dyson Award² for their innovative project, yaR (meaning “friend” in Hindi). 

dissertation on data science

The development of yaR was supported by NTU's Student Entrepreneurship Program (SEP) and CCDS’s Innovation Lab (I-Lab). The team credits I-Lab for providing a dedicated workspace crucial to their innovation process. "I-Lab gave us a haven from academic pressures and social commitments where we could focus solely on building," said Yajat Gulati. The team also received valuable guidance from NTU professors – Mohamed M. Sabry Aly, Arvind Easwaran, and Bo An. These faculty members provided insights on hardware development, shared experiences from similar projects and offered critical feedback during the team’s SEP application process.

yaR stands out for its sleek design, ease of use, and comprehensive features. Unlike existing solutions, it offers existing technologies like object recognition, text reading, and scene description in a compact, water-resistant device with long battery life and Long Term Evolution (LTE) connectivity – all at an accessible price.

The team’s success in the James Dyson Award competition is a testament to their innovative thinking and the robust support they received from NTU’s entrepreneurial ecosystem. As they continue to refine yaR, they aim to further miniaturize the device and enhance its object detection capabilities. The device is open-sourced and currently seeking crowdfunding on Kickstarter.

The National Winner (NUS, Mammosense), another National Runner-up (SUTD, airXeed Radiosonde) and yaR, will progress to the international stage of the James Dyson Award, where they will stand a chance to receive S$50,500.

The international top 20 shortlist will be announced on 16th October, and the international winners on 13th November.

Notes: 

¹CSC: B.Eng in Computer Science

²The James Dyson Award  is an international design competition which inspires and celebrates the next generation of design engineers. The Award operates across 29 countries this year and has supported over 400 problem-solving inventions with over £1million in prize money. It is run by the James Dyson Foundation , Sir James Dyson’s engineering-education charity.

During the National Judging round, a panel of external judges will select 1 National Winner and 2  National Runners-up in each of the 29 participating countries. The National Winner and Runners-up will enter the next stage, where a panel of Dyson Engineers will review, select, and shortlist the Top 20 teams globally. The shortlist then makes it to Sir James Dyson who will personally select the international winners and runners-up.

LHZB article: https://www.zaobao.com.sg/news/singapore/story20240912-4677956

Related stories

Thumbnail photo of Li Kaixuan (left) received the awarded ACM SIGSOFT Distinguished Paper on behalf of his team at FSE 2024.

ACM SIGSOFT Distinguished Paper Award at FSE 2024

Team photo for Outstanding Paper Award at 10th International Conference on Connected Smart Cities 2024.

Outstanding Paper Award at 10th International Conference on Connected Smart Cities 2024 (CSC24)

Thumbnail image of a winner and two runner-up.

CCDS Outstanding PhD Thesis Award 2024

Photo of Team NTU at ISC24 Student Cluster Competition

Team NTU Celebrates Third Place Win in Online Component of ISC24 Student Cluster Competition at Hamburg, Germany

Thumbnail photo of ntu postgrad received award at the 53rd St. Gallen Symposium 2024.

Global Essay Competition Winners at the 53rd St. Gallen Symposium 2024

Photo of NAP Yu Han at AAAI.

Three Innovative Application of AI Awards from AAAI 2024

IMAGES

  1. thesis in data science

    dissertation on data science

  2. The Science Behind Dissertation Data Analysis

    dissertation on data science

  3. To-notch Dissertation Data Analysis Help Service Online

    dissertation on data science

  4. School essay: Writing a dissertation with secondary data

    dissertation on data science

  5. Calaméo

    dissertation on data science

  6. Data analysis section of dissertation. How to Use Quantitative Data

    dissertation on data science

VIDEO

  1. Why Data Science?

  2. DISSERTATION-Poster-Presentation- MSc Data Science (ML- CRIME PREDICTION)

  3. DATA SCIENCE [MODULE-2]

  4. MBA Data Science Synopsis

  5. 77344859

  6. Analysing your data for your dissertation

COMMENTS

  1. Computational and Data Sciences (PhD) Dissertations

    Computational and Data Sciences (PhD) Dissertations. Below is a selection of dissertations from the Doctor of Philosophy in Computational and Data Sciences program in Schmid College that have been included in Chapman University Digital Commons. Additional dissertations from years prior to 2019 are available through the Leatherby Libraries ...

  2. Research Topics & Ideas: Data Science

    I f you're just starting out exploring data science-related topics for your dissertation, thesis or research project, you've come to the right place. In this post, we'll help kickstart your research by providing a hearty list of data science and analytics-related research ideas, including examples from recent studies.. PS - This is just the start…

  3. Ten Research Challenge Areas in Data Science

    Abstract. To drive progress in the field of data science, we propose 10 challenge areas for the research community to pursue. Since data science is broad, with methods drawing from computer science, statistics, and other disciplines, and with applications appearing in all sectors, these challenge areas speak to the breadth of issues spanning ...

  4. Top 10 Essential Data Science Topics to Real-World Application From the

    1. Introduction. Statistics and data science are more popular than ever in this era of data explosion and technological advances. Decades ago, John Tukey (Brillinger, 2014) said, "The best thing about being a statistician is that you get to play in everyone's backyard."More recently, Xiao-Li Meng (2009) said, "We no longer simply enjoy the privilege of playing in or cleaning up everyone ...

  5. Doctor of Data Science and Analytics Dissertations

    The Ph.D. in Data Science and Analytics is an advanced degree with a dual focus of application and research - where students will engage in real world business problems, which will inform and guide their research interests. We launched the first formal PhD program in Data Science in 2015.

  6. How to write a great data science thesis

    They will stress the importance of structure, substance and style. They will urge you to write down your methodology and results first, then progress to the literature review, introduction and conclusions and to write the summary or abstract last. To write clearly and directly with the reader's expectations always in mind.

  7. data science Latest Research Papers

    Assessing the effects of fuel energy consumption, foreign direct investment and GDP on CO2 emission: New data science evidence from Europe & Central Asia. Fuel . 10.1016/j.fuel.2021.123098 . 2022 . Vol 314 . pp. 123098. Author (s): Muhammad Mohsin . Sobia Naseem .

  8. 17 Compelling Machine Learning Ph.D. Dissertations

    This dissertation revisits and makes progress on some old but challenging problems concerning least squares estimation, the work-horse of supervised machine learning. Two major problems are addressed: (i) least squares estimation with heavy-tailed errors, and (ii) least squares estimation in non-Donsker classes.

  9. PhD Dissertations

    PhD Dissertations [All are .pdf files] Neural processes underlying cognitive control during language production (unavailable) Tara Pirnia, 2024 The Neurodynamic Basis of Real World Face Perception Arish Alreja, 2024. Towards More Powerful Graph Representation Learning Lingxiao Zhao, 2024. Robust Machine Learning: Detection, Evaluation and Adaptation Under Distribution Shift Saurabh Garg, 2024

  10. 10 Compelling Machine Learning Ph.D. Dissertations for 2020

    This dissertation explores three topics related to random forests: tree aggregation, variable importance, and robustness. 10. Climate Data Computing: Optimal Interpolation, Averaging, Visualization and Delivery. This dissertation solves two important problems in the modern analysis of big climate data.

  11. PhD in Data Science

    PhD in Analytics and Data Science. Students pursuing a PhD in analytics and data science at Kennesaw State University must complete 78 credit hours: 48 course hours and 6 electives (spread over 4 years of study), a minimum 12 credit hours for dissertation research, and a minimum 12 credit-hour internship.

  12. Data Science Masters Theses

    Data Science Masters Theses. The Master of Science in Data Science program requires the successful completion of 12 courses to obtain a degree. These requirements cover six core courses, a leadership or project management course, two required courses corresponding to a declared specialization, two electives, and a capstone project or thesis.

  13. Recent Dissertation Topics

    Dissertation Advisor: Marten Wegkamp and Florentina Bunea. 2021. - "Nonparametric and semiparametric approaches to functional data modeling". - "Deep probabilistic models for sequential prediction". - "Off-policy evaluation and learning for interactive systems". - "Scalable and reliable inference for probabilistic modeling".

  14. Data science: a game changer for science and innovation

    This paper shows data science's potential for disruptive innovation in science, industry, policy, and people's lives. We present how data science impacts science and society at large in the coming years, including ethical problems in managing human behavior data and considering the quantitative expectations of data science economic impact. We introduce concepts such as open science and e ...

  15. Five Tips For Writing A Great Data Science Thesis

    Although educational programs, conventions and thesis requirements vary wildly, I hope to offer some common guidelines for any student currently working on a Data Science thesis. The article offers five guidance points, but may effectively be summarized in a single line: "Write for your reader, not for yourself."

  16. Top 99 Data Science Dissertation Topics & Writing Tips

    A Data Science Dissertation is a research project where students explore the vast field of data science. This involves analyzing large sets of data, creating models, and finding patterns to solve problems or make decisions. In a data science dissertation, you might work on topics like machine learning, big data analytics, or predictive modeling.

  17. PhD Program : Department of Statistics and Data Science

    PhD Program Overview. The doctoral program in Statistics and Data Science is designed to provide students with comprehensive training in theory and methodology in statistics and data science, and their applications to problems in a wide range of fields. The program is flexible and may be arranged to reflect students' interests and career goals.

  18. Thesis/Capstone for Master's in Data Science

    Data Science; Capstone and Thesis Overview; Capstone and Thesis Overview. Capstone and thesis are similar in that they both represent a culminating, scholarly effort of high quality. Both should clearly state a problem or issue to be addressed. Both will allow students to complete a larger project and produce a product or publication that can ...

  19. PDF University of Washington

    University of Washington

  20. Consultancy Style Dissertations in Statistics and Data Science: Why and How

    Abstract. In this article, we chronicle the development of the consultancy style dissertations of the MSc program in Statistics with Data Science at the University of Edinburgh. These dissertations are based on real-world data problems, in joint supervision with industrial and academic partners, and aim to get all students in the cohort ...

  21. Harvard University Theses, Dissertations, and Prize Papers

    The Harvard University Archives' collection of theses, dissertations, and prize papers document the wide range of academic research undertaken by Harvard students over the course of the University's history.. Beyond their value as pieces of original research, these collections document the history of American higher education, chronicling both the growth of Harvard as a major research ...

  22. 15 Amazing Data Science Dissertation Topics For Students

    Discover top Data Science Dissertation Topics in 2024 or get three custom topics based on your academic needs for free. +44 7897 053596. [email protected]. Premier Dissertation- A name of reliability in the field of academics since 2010.

  23. ProQuest Dissertations & Theses Global

    ProQuest Dissertations and Theses Global with the Web of Science™ enables researchers to seamlessly uncover early career, post-graduate research in the form of more than 5.5 million dissertations and theses from over 4,100 institutions from more than 60 countries, alongside journal articles, conference proceedings, research data, books, preprints and patents.

  24. MS in Data Science

    Columbia's program in Data Science is one of the most highly-rated and respected in the world. Graduates are known for their technical knowledge, research skills, and innovative spirit. Our students benefit from close departmental connections with industry partners and consistently receive offers from top employers and graduate programs.

  25. LibGuides: IAPA Thesis Writers Guide to Data: Introduction

    This guide will introduce you to resources and services to support your thesis project. We specialize in social science data + scholarly resources, and can help you get what you need for your projects. We have resources to support you along the research process, including: Find social science data: datasets, databases/platforms, API, text data

  26. College of Computing and Data Science

    ¹CSC: B.Eng in Computer Science. ²The James Dyson Award is an international design competition which inspires and celebrates the next generation of design engineers. The Award operates across 29 countries this year and has supported over 400 problem-solving inventions with over £1million in prize money.